Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:19:10.976Z Has data issue: false hasContentIssue false

Neutron Diffraction Studies of Cd1−xMnxSe Epilayers and ZnSe/MnSe Multilayers

Published online by Cambridge University Press:  21 February 2011

T. M. Giebultowicz
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556 National Institute of Standards and Technology, Gaithersburg, NO 20899
P. Klosowski
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
J. J. Rhyne
Affiliation:
National Institute of Standards and Technology, Gaithersburg, NO 20899
N. Samarth
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
H. Luo
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
J.K. Furdyna
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

Neutron diffraction patterns of MBE-grown single crystal zinc-blende epilayers of Cd1−xMnxSe with x=0.70 and 0.75 reveal the onset of long-range Type-III AF ordering at low T, in sharp contrast with earlier studies of bulk II-VI diluted magnetic semiconductors, where only short-range Type III correlations are observed. Results of first neutron diffraction studies of magnetic ordering in MBE-grown ZnSe/MnSe superlattices are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Diluted Magnetic Semiconductors, vol. 25 of Semiconductors and semimetals, ed. by Furdyna, J.K. and Kossut, J. (Academic Press, Boston, 1988).Google Scholar
2. Furdyna, J.K., J. Appl. Phys. 64, R29 (1988).CrossRefGoogle Scholar
3. Larson, B.E., Hass, K.C., Ehrenreich, H., and Carlsson, A.E., Phys. Rev. B 37, 4137 (1988).CrossRefGoogle Scholar
4. See, e.g., Oseroff, S. and Keesom, P.H., in Ref. 1, p. 73.Google Scholar
5. Ayadi, M., Ferre, J., Mauger, A., and Triboulet, R., Phys. Rev. Lett. 57, 1165 (1986).CrossRefGoogle Scholar
6. Geshwind, S., Ogielski, A.T., Devlin, G., Hegarty, J., and Bridenbaugh, P., J. Appl. Phys. 63, 3738 (1988).Google Scholar
7. Giebultowicz, T.M. and Holden, T.M., in Ref. 1, p. 125.Google Scholar
8. Anderson, P.W., Phys. Rev. 79, 705 (1953); see also J.S. Smart, Effective Field theories in Magnetism (Saunders, Philadelphia, 1966).CrossRefGoogle Scholar
9. Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Gu, B.P., Hefetz, Y., and Nurmikko, A.V., Appl. Phys. Lett. 48, 1482 (1986).Google Scholar
10. Samarth, N., Luo, H., Furdyna, J.K., Lee, Y.R., Alonso, R.G., Suh, E.K., Ramdas, A.K., Quadri, S., and Otsuka, N., Surface Science (to be published).Google Scholar
11. Chang, S.-K., Lee, D., Nakata, H., Nurmikko, A.V., Kolodziejski, L.A., and Gunshor, R.L., J. Appl. Phys. 62, 4835 (1987).CrossRefGoogle Scholar