Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T10:42:44.589Z Has data issue: false hasContentIssue false

New Dynamic Air-Brush Technique for SWCNTs Deposition: Application to Fabrication of CNTFETs for Electronics and Gas Sensing

Published online by Cambridge University Press:  01 June 2011

P. Bondavalli*
Affiliation:
Nanocarb Lab., Physics Department, Thales Research and Technology, Palaiseau, France
L. Gorintin
Affiliation:
Nanocarb Lab., Physics Department, Thales Research and Technology, Palaiseau, France
P. Legagneux
Affiliation:
Nanocarb Lab., Physics Department, Thales Research and Technology, Palaiseau, France
J.P. Simonato
Affiliation:
LITEN / DTNM / LCH, CEA-Grenoble Grenoble, France.
L. Cailler
Affiliation:
LITEN / DTNM / LCH, CEA-Grenoble Grenoble, France.
Get access

Abstract

This contribution deals with Carbon Nanotubes Field Effect transistors (CNTFETs) based gas sensors fabricated using a completely new dynamic spray based technique (patented) for SWCNTs deposition. The extreme novelty is that our technique is compatible with large surfaces, flexible substrates and allows to fabricate high performances transistors exploiting the percolation effect of the SWCNTs networks achieved with extremely reproducible characteristics. Recently, we have been able to achieve extremely selective measurement of NO2, NH3 and CO using four CNTFETS fabricated using different metals as electrodes, exploiting the specific interaction between gas and metal/SWCNT junctions. In this way we have identify an electronic fingerprinting of the gas detected. The response time is evaluated at less than 30sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ijima, S., Nature 354, pp. 5658, 1991 Google Scholar
2. Avouris, Ph., Chen, Z.and Perebeinos, V., Nature Nanotechnology 2, pp. 605615, (2007)Google Scholar
3. Collins, P.G., Hersam, M., Arnold, M., Martel, R. & Avouris, P., Phys. Rev. Lett. 86, pp. 31283131, (2001)Google Scholar
4. Kim, P., Shi, L.. Majumdar, A., McEuen, P. L., Phys.Rev.Lett. 87, p. 215502, (2001)Google Scholar
5. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T., Appl. Phys. A A74, pp. 339343, (2002)Google Scholar
6. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., Fischer, J. E., Appl.Phys. A 74, no 3, pp. 339343, (2002)Google Scholar
7. Ruoff, R. S., Qian, D., Kam Liu, W., C. R. Physique 4, pp. 9931008, (2003)10.1016/j.crhy.2003.08.001Google Scholar
8. de Heer, W. A., Chatelain, A., and Urgate, D., Science 270, pp. 11791180, (1995)Google Scholar
9. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science 283, pp. 512514 (1999)Google Scholar
10. Teo, K., JOM 59, pp. 2932, (2007)Google Scholar
11. Kim, Y. C. and Yoo, E. H., Jpn. J. Appl. Phys., 44, pp. L454L456, (2005)Google Scholar
12. Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., and Okuyama, F., Appl. Phys. Lett, 78, pp. 25782580, (2001)Google Scholar
13. Prasher, R., Proceedings of the IEEE 94, pp. 15711586, (2006)Google Scholar
14. Qian, D., Wagner, G. J., Liu, W. K., Yu, M-F., Ruoff, R. S., Appl. Mech. Rev. 55, pp. 495532, (2002)Google Scholar
15. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. J., IEEE transactions on nanotechnology 1, pp. 184189, (2002)Google Scholar
16. Dai, H., Surface Science 500, pp. 218241, (2002)Google Scholar
17. Sinha, N., Ma, J., Yeow, J. T. W., J.Nanoscience and Nanotechnology 6, pp. 573590, (2006)10.1166/jnn.2006.121Google Scholar
18. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X., Wang, Q., Chang, Y-L., Dai, H., J. Am. Chem. Soc. 26, pp.15631568, (2004)Google Scholar
19. Chen, R.J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., Kim, W., Utz, P. J. and Dai, H., PNAS 100, pp.49844989, (2003)10.1073/pnas.0837064100Google Scholar
20. Koratkar, N., Ajayna, P., Modi, A., Lass, E., Patent WO/2004/059298 Google Scholar
21. Goldoni, L. Petaccia, S. Lizzit, and Larciprete, R., J. Am. Chem. Soc., 125p 1132911333, (2003)Google Scholar
22. Ueda, T., Norimatsu, H., Bhuiyan, Md. M. H., Ikegami, T. and Ebihara, K., Jpn. J. Appl. Phys 45, pp. 83938397, (2006)Google Scholar
23. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M., Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nanoletters 3, 929933, (2003)10.1021/nl034220xGoogle Scholar
24. Valentini, L., Armetano, I., Kenny, J. H., Cantalini, C., Lozzi, L., Santucci, S., Appl.Phys.Lett. 82, pp. 961963, (2003)10.1063/1.1545166Google Scholar
25. Saito, R., Dresselhaus, G., Dressealhaus, M. S., Physical properties of carbon nanotubes, ed. Imperial college press, 259 (2003)Google Scholar
26. Kong, J., Franklin, N., Chou, C., Pan, S., Cho, K. J. and Dai, H., Science 287, pp. 622625, (2000).Google Scholar
27. Bondavalli, P., Legagneux, P., Pribat, D., Sensors and Actuators B V. 140, pp 304318, (2009)Google Scholar
28. Bondavalli, P., Legagneux, P., Pribat, D., Mat. Res. Society Proc. 1081, P1402, (2008)Google Scholar
29. Bondavalli, P., Legagneux, P., Pribat, D., Patent WO/2006/128828 Google Scholar
30. CNTFETs based gas sensors: patent review, Bondavalli, P., Recent Patents on Electrical Engineering, 3 (2010)Google Scholar