Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:15:21.605Z Has data issue: false hasContentIssue false

New Magnetic and Ferroelectric Cubic Phase of Thin-Film Fe-Doped BaTiO3

Published online by Cambridge University Press:  10 February 2011

R. Maier
Affiliation:
Department of Physics, University of Miami, Coral Gables, FL 33124
J. L. Cohn
Affiliation:
Department of Physics, University of Miami, Coral Gables, FL 33124
J. J. Neumeier
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
L. A. Bendersky
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

The properties of a new cubic perovskite phase of thin-film BaFexTi1−xO3 (0.5 ≤x≤0.75) are reported. This material is novel because the corresponding bulk compounds have hexagonal structure for comparable x. The films, grown by pulsed laser deposition on MgO and SrTiO3 substrates, are magnetic (ferro- or ferri-, with Tc > 500°C) and ferroelectric (Tc ∼ 200-300°C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smolenskii, G. A. and Chupis, I., Sov. Phys. Usp. 25, 475 (1982).Google Scholar
2. Akimoto, J., Gotoh, Y., and Osawa, Y., Acta Crystallogr. C50, 160 (1994);Google Scholar
Megaw, H. D., Proc. Phys. Soc. London 58, 133 (1946).Google Scholar
3. Vanderah, T. A., Loezos, J. M., and Roth, R. S., J. Sol. St. Chem., 121, 38 (1996).Google Scholar
4. Bendersky, L.A., Maier, R., Cohn, J. L., and Neumeier, J. J., J. Mater. Res., in press.Google Scholar
5. Kim, S., Hishita, S., Kang, Y. M., and Baik, S., J. Appl. Phys. 78, 5604 (1995).Google Scholar
6. Fahey, K. P., Clemens, B. M., and Wills, L. A., Appl. Phys. Lett. 67, 2480 (1995);Google Scholar
Jia, C., Urban, K., Mertin, M., Hoffmann, S., and Waser, R., Phil. Mag. A 77, 923 (1998).Google Scholar
7. Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998);Google Scholar
Pertsev, N. A., Zembilgotov, A. G., Hoffmann, S., Waser, R., and Tagantsev, A. K., J. Appl. Phys. 85, 1698 (1999).Google Scholar
8. Shorting of the current through the more conductive SrTiO3 substrates precludes measurement of the in-plane electrical resistance of films grown on SrTiO3.Google Scholar
9. Heywang, W., Sol. St. Electron. 3, 51 (1961);Google Scholar
Jonker, G. H., ibid, 7, 895 (1964);Google Scholar
Lewis, G. V., Catlow, C. R. A., and Casselton, R. E. W., J. Am. Ceram. Soc. 68, 555 (1985);Google Scholar
Wang, D. Y., ibid., 73, 669 (1990);Google Scholar
Alles, A. B. and Burdick, V. L., ibid, 76, 401 (1993);Google Scholar
Miki, T., Fujimoto, A., and Jida, S., J. Appl. Phys. 83, 1592 (1998).Google Scholar
10. Norton, M. G., Crackle, K. P. B., Carter, C. B., J. Am. Ceram. Soc. 75, 1999 (1992);Google Scholar
Nashimoto, K. N., Fork, D. K., and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992);Google Scholar
Gong, J., Kim, D. H. and Kwok, H. S., Appl. Phys. Lett. 67, 1803 (1995).Google Scholar
11. Samara, G. A., Phys. Rev. 151, 378 (1966).Google Scholar