Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:16:38.750Z Has data issue: false hasContentIssue false

A New Method for Fast Simulation of Adsorbate Dynamics

Published online by Cambridge University Press:  21 February 2011

P.V. Kumar
Affiliation:
Departments of Chemical Engineering and Physics Pennsylvania State University University Park, PA 16802
Steven J. Warakomski
Affiliation:
Departments of Chemical Engineering and Physics Pennsylvania State University University Park, PA 16802
Kristen A. Fichthorn
Affiliation:
Departments of Chemical Engineering and Physics Pennsylvania State University University Park, PA 16802
Get access

Abstract

We present a dynamical version of the Smart Monte Carlo method to model the diffusion dynamics of a metal atom on a metal surface. This method, in conjunction with umbrella sampling, can be used to simulate the dynamics of metal thin film growth, including all relevant atomic-scale phenomenon, over long time scales, characteristic of experimental studies. To demonstrate the accuracy of this method we simulate the dynamics of Rh on Rh(111) and Cu on Cu(100). Interatomic forces are modeled with Lennard-Jones and Corrective-Effective-Medium potentials for the Rh and Cu systems, respectively. We show that this new simulation method correctly reproduces the diffusion dynamics and, with some modification, allows us to reach experimental time scales.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Egelhoff, W.F. Jr. and Jacob, I., Phys. Rev. Lett. 62, 921 (1989).Google Scholar
2 Künkel, R., Poelsema, B., Verheij, L.K. and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
3 Günther, S., Kopaizki, E., Bartelt, M.C., Evans, J.W. and Behm, R.J., Phvs. Rev. Lett. 73, 553 (1994).Google Scholar
4 Voter, A.F. and Doll, J.D., J. Chem. Phys. 80, 5814 (1984); J. Chem. Phys. 80, 5832 (1984); J. Chem. Phys. 82, 80 (1985).Google Scholar
5 Voter, A.F., Phys. Rev. B 34, 6819 (1986); J. Chem. Phys. 82, 1890 (1985).Google Scholar
6 Kang, H.C. and Weinberg, W.H., J. Chem. Phys. 90, 2824 (1989).Google Scholar
7 Fichthorn, K.A. and Weinberg, W.H., J. Chem. Phys. 95, 1090 (1991).Google Scholar
8 Cao, Pei-Lin, Phys. Rev. Lett. 73, 2595 (1994).Google Scholar
9 Bowler, A.M. and Hood, E.S., J. Chem. Phys. 94, 5162 (1991).Google Scholar
10 Rossky, P.J., Doll, J.D. and Friedman, H.L., J. Chem. Phys. 69, 4628 (1978).Google Scholar
11 Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford (1987).Google Scholar
12 Valleau, J.P. and Whittington, S.G., in Modern Theoretical Chemistry, edited by Beme, B.J., (Plenum Press New York, 1977), Vol. 5.Google Scholar
13 Sanders, D.E., Stave, M.S., Perkins, L.S. and DePristo, A.E., Comp. Phvs. Commun. 70, 579 (1992).Google Scholar
14 Sanders, D.E. and DePristo, A.E., Surf. Sci. Lett. 264, L169 (1992); Surf. Sci. 260, 116 (1992).Google Scholar
15 Kumar, P.V., Raut, J.S., Warakomski, S.J. and Fichthorn, K.A.,.Chem. Phys (submitted).Google Scholar
16 Kumar, P.V., Raut, J.S., Warakomski, S.J., and Fichthorn, K.A.,.Chem. Phys. (in preparation).Google Scholar