Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T11:34:45.832Z Has data issue: false hasContentIssue false

No Interfacial Layer for PEDOT Electrodes on PVDF: Characterization of Reactions at the Interface P(VDF/TrFE)/Al and P(VDF/TrFE)/PEDOT:PSS

Published online by Cambridge University Press:  01 February 2011

Klaus Mueller
Affiliation:
muellerk@tu-cottbus.de, BTU Cottbus, Applied Physics, Konrad Wachsmann Allee 1, Cottbus, 03046, Germany
Dipanka Mandal
Affiliation:
Mandal@tu-cottbus.de, BTU Cottbus, Cottbus, 03046, Germany
Dieter Schmeisser
Affiliation:
DSCH@tu-cottbus.de, BTU Cottbus, Cottbus, 03046, Germany
Get access

Abstract

With photoelectron spectroscopy, we study the interface chemistry of the copolymer poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) and different electrode materials. We compare the interfaces aluminum/P(VDF-TrFE) and PEDOT:PSS/P(VDF-TrFE). PEDOT:PSS is a conductive polymer (Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)). The data sug-gest that we have an interface layer for electrodes, made of aluminum. An interface reaction occurs in both cases: for aluminum as top and as bottom electrode. In contrast, the organic PE-DOT:PSS electrode shows no chemical interaction with the P(VDF-TrFE) polymer. The much lower reactivity of organic electrodes, compared to aluminum, gives a direct hint to im-proved functional properties of thin organic ferroelectric films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Parashkov, R., Becker, E., Riedl, T., HH, Johannes, Kowalsky, W. Proceedings of the IEEE 93 (2005) 1321 Google Scholar
2 Zhang, Q., , Xu, Fang, F., Cheng, Z., and Xia, F., J. Apll. Phys. 89 (2001) 2613 Google Scholar
3 Müller, K., Paloumpa, I., Henkel, K., Schmeifler, D., Materials Science and Engineering C, 26 (2006) 1028 Google Scholar
4 Müller, K., Paloumpa, I., Henkel, K., Schmeifler, D., Journal of Applied Physics 98 (2005) 056104 Google Scholar
5 Xia, F., Zhang, M., Appl. Phys. Lett. 85 (2004), 1719 Google Scholar
6 Naber, R., Blom, P., Marsman, A., and Leeuw, d. de, Appl. Phys. Lett. 85 (2004) 2032 Google Scholar
7 Furukawa, T., Phase Transitions 18 (1989) 143.Google Scholar
8 Hoffmann, P., Mikalo, R. P. and Schmeifler, D., Solid-State Electron. 44 (2000) 837.Google Scholar
9 Wagner, C., Riggs, W., Davies, L., Moulder, J., Mullenberg, G. (Editor), Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corporation, Physical Electronics Division, Minnesota, 1978.Google Scholar