Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T02:16:59.976Z Has data issue: false hasContentIssue false

Noise and Operational Characteristics of Magnetometers Made from Superconducting-Normal-Superconducting Josephson Junctions

Published online by Cambridge University Press:  15 February 2011

D. Reagor
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
C. Mombourquette
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
J. Decker
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
Y. Fan
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
M. Hawley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
R. Houlton
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
Q. X. Jia
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM.
Get access

Abstract

We have fabricated numerous magnetometers using our high temperature superconducting (HTS) Josephson junctions. These Josephson junctions are fabricated in a superconducting-normal-superconducting ramp edge configuration1 with silver doped YBa2Cu3O7 (YBCO) for the superconducting electrodes and PrBa2Cu3O7, (PBCO) for the normal layer. Small inductance quantum interference devices (SQUEDs) made from this junction technology have a transfer function exceeding 150 microvolts per flux quanta and a flux noise of 5×10−6flux quanta per root hertz. In addition, we have established that these junctions have identical electrical characteristics after either a year of storage or repeated thermal cycling. We have also examined the trade-off of 1/f noise versus thermal noise that is obtained as we vary the critical current of the devices.

The SQUID magnetometers were made using galvanically coupled input coils. These devices exhibit excellent operational characteristics in the geomagnetic field. They functioned in an unshielded environment for more than 24 hours and operated in a moving dewar (without any feedback fields to compensate the changing applied field) - both without flux trapping. Noise characteristics under these conditions are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jia, Q. X., Wu, X. D., Reagor, D., Foltyn, S. R., Mombourquette, C., and Peterson, D. E., “Edge-geometry SNS dc SQUIDs using Ag-doped YBa2Cu307-x electrodes”, Electronics Lett. 32, p. 499 (1996).Google Scholar
2. Reagor, D., Houlton, R., Springer, K., Hawley, M., Jia, Q. X., Mombourquette, C, Garzon, F., and Wu, X. D., “Development of high temperature superconducting quantum interference devices using low deposition temperature YBa2Cu307-d barriers”, Appl. Phys. Lett. 66, p. 2280 (1995).Google Scholar
3. DiTorio, M. S., Yoshizumi, S., Yang, K. Y., Zhang, J., and Maung, M., Appl. Phys. Lett. 58, p. 2552 (1991).Google Scholar
4. 1 Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, p. 733 (1991).Google Scholar
5. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., “Orientation dependence of grain-boundary critical currents in YBa2Cu307-d Bicrystals”, Phys. Rev. Lett. 61, p. 219 (1988).Google Scholar
6. Lee, L. P., Longo, J., Vinetskiy, V., and Cantor, R., “Low-noise YBa2Cu307-d direct-current superconducting quantum interference device magnetometer with direct signal injection”, Appl. Phys. Lett. 66, p. 1539 (1995).Google Scholar
7. Faley, M. I., Poppe, U., Urban, K., Hilgenkamp, H., Hemmes, H., Aarnink, W., Flokstra, J., and Rogalla, H., Appl. Phys. Lett. 67, p. 2087 (1995).Google Scholar
8. Jia, Q. X., Reagor, D., Mombourquette, C., Fan, Y., Decker, J., and D'Alessandris, P., preprint.Google Scholar
9. Jia, Q. X., Wu, X. D., Reagor, D., Foltyn, S. R., Mombourquette, C., Tiwari, P., Campbell, I. H., Houlton, R. J., and Peterson, D. E., “High-temperature superconductor josephson junctions with a gradient Pr-doped Y1-xPrxBa2Cu3O7-d barrier”, Appl. Phys. Lett. 65, p. 2866 (1994).Google Scholar
10. Model 550, Quantum Design, San Diego, CA.Google Scholar
11. Dantsker, U.E., Tanaka, S., Nilsson, P. A., Kleiner, R., and Clarke, J., preprint.Google Scholar