Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T05:43:32.128Z Has data issue: false hasContentIssue false

Non-planar Corrugated Layered Heptazine-based Carbon Nitride: The Lowest Energy Modifications of C3N4

Published online by Cambridge University Press:  01 February 2011

Peter Kroll
Affiliation:
pkroll@uta.edu, University of Texas at Arlington, Chemistry and Biochemsitry, 700 Planetarium Pl, Arlingtom, TX, 76019, United States
Jose Gracia
Affiliation:
jose.gracia@ac.rwth-aachen.de, RWTH Aachen, Inorganic Chemistry, Aachen, 52056, Germany
Get access

Abstract

We investigate structure and energy of carbon nitride, C3N4, with a special focus on two-dimensional graphitic-type structures. Our density functional calculations indicate that structures comprising heptazine (C6N7) heterocycles are energetically more favorable than structures comprising triazine (C3N3) heterocycles. Lowest energy modifications exhibit corrugated sheets with a substantial gain in energy in comparison to planar structures. Our analysis indicates that nitrogen-nitrogen non-bonded interaction is the key to understand the corrugation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Liu, A., Cohen, M. L., Science 1989, 245, 841.Google Scholar
[2] E. Horvath-Bordon, Riedel, R., Zerr, A., McMillan, P. F., Auffermann, G., Prots, Y., Bronger, W., Kniep, R., and Kroll, P., Chemical Society Reviews 35 (2006) 9871014.Google Scholar
[3] Teter, D. M., Hemley, R. J., Science 1996, 271, 53.Google Scholar
[4] Kroke, E., Schwarz, M., Horvath-Bordon, E., Kroll, P., Noll, B., Norman, A. D., New J. Chem. 2002, 26, 508.Google Scholar
[5] Lotsch, B. V., Doblinger, M., Sehnert, J., Seyfarth, L., Senker, J., Oeckler, O., and W, W. Schnick, Chem. Eur. J. 2007, 13, 4969.Google Scholar
[6] Vodak, D. T., Kim, K., Iordanidis, L., Rasmussen, P. G., Matzger, A. J., and Yaghi, O. M., Chem. Eur. J. 2003, 9, 4197.Google Scholar
[7] Sehnert, J., Baerwinkel, K., Senker, J., J. Phys. Chem. B 2007, 111, 1067110680.Google Scholar
[8] Kresse, G., Hafner, J., J. Phys. Rev. B 1993, 47, 558.10.1103/PhysRevB.47.558Google Scholar
[9] Kresse, G., Hafner, J., J. Phys. Rev. B 1994, 49, 14251.Google Scholar
[10] Kresse, G., Furthmüller, J., J. Comput. Mater. Sci. 1996, 6, 15.10.1016/0927-0256(96)00008-0Google Scholar
[11] Kresse, G., Furthmüller, J., J. Phys. Rev. B 1996, 54, 11169.Google Scholar
[12] Kroll, P. and Hoffmann, R., J. Am. Chem. Soc. 1999, 121, 46964703.Google Scholar