Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T12:30:31.497Z Has data issue: false hasContentIssue false

A Novel Approach For Nanocarbon Composite Preparation

Published online by Cambridge University Press:  13 July 2012

Albert G. Nasibulin
Affiliation:
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076, Finland
Tatyana Koltsova
Affiliation:
Material Science Faculty, State Polytechnical University, Polytechnicheskaya, 29, 195251, Saint Petersburg, Russia
Larisa I. Nasibulina
Affiliation:
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076, Finland
Ilya V. Anoshkin
Affiliation:
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076, Finland
Alexandr Semencha
Affiliation:
Material Science Faculty, State Polytechnical University, Polytechnicheskaya, 29, 195251, Saint Petersburg, Russia
Oleg V. Tolochko
Affiliation:
Material Science Faculty, State Polytechnical University, Polytechnicheskaya, 29, 195251, Saint Petersburg, Russia
Esko I. Kauppinen
Affiliation:
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076, Finland
Get access

Abstract

Carbon nanotubes (CNTs), nanofibers (CNFs) and graphene are promising components for the next generation high performance structural and multi-functional composite materials. One of the largest obstacles to create strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of the carbon nanomaterial purification, ultrasound sonication and functionalization are required. We utilized a new approach to grow CNTs/CNFs directly on the surface of matrix, matrix precursor or filler particles. As the precursor matrix and fillers we utilized cement (clinker), copper powder, fly ash particles, soil and sand. Carbon nanomaterials were successfully grown on these materials without additional catalyst. Investigations of the physical properties of the composite materials based on these carbon modified particles revealed enhancement in the mechanical and electrical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C., Science of Fullerenes and Nanotubes (San Diego: Academic Press, 1996) p. 965.Google Scholar
Reich, S., Thomsen, C. and Maultzsch, J., Carbon Nanotubes (Weinheim: Wiley-VCH, 2004) p. 214.Google Scholar
Riggs, J. E., Guo, Z. X., Carroll, D. L. and Sun, Y. P., J. Am. Chem. Soc. 122, 5879 (2000).CrossRefGoogle Scholar
Zhang, X., Li, Q., Holesinger, T. G., Arendt, P. N., Huang, J., Kirven, P. D., Clapp, T. G., DePaula, R. F., Liao, X., Zhao, Y., Zheng, L., Peterson, D. E. and Zhu, Y., Adv. Mater. 19, 4198 (2007).Google Scholar
Calvert, P., Nature 399, 210 (1999).Google Scholar
Nasibulina, L. I., Anoshkin, I. V., Shandakov, S. D., Nasibulin, A. G., Cwirzen, A., Mudimela, P. R., Habermehl-Cwirzen, K., Malm, J. E. M., Koltsova, T. S., Tian, Y., Vasilieva, E. S., Penttala, V., Tolochko, O. V., Karppinen, M. J., Kauppinen, E. I., Direct synthesis of carbon nanofibers on cement particles. Transportation Research Record 2142, 96 (2010).CrossRefGoogle Scholar
Nasibulin, A. G., Shandakov, S. D., Nasibulina, L. I., Cwirzen, A., Prasantha, R. M., Habermehl-Cwirzen, K., Grishin, D. A., Gavrilov, Y. V., Malm, J. E. M., Tian, Y., Penttala, V., Karppinen, M. J. and Kauppinen, E. I., A novel cement hybrid material. New Journal of Physics 11, 023013 (2009).CrossRefGoogle Scholar
Nasibulina, L. I., Anoshkin, I. V., Semencha, A. V., Tolochko, O. V., Malm, J. E. M., Karppinen, M. J., Nasibulin, A. G., Kauppinen, E. I., Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties. Materials Physics and Mechanics. 13, 77 (2012).Google Scholar
Gao, Y., He, P., Lian, J., Wang, L., Qian, D., Zhao, J., Wang, W., Schulz, M. J., Zhang, J., Zhou, X., Shi, D., J. Macromol. Sci. Part B: Physics 45, 671 (2006).Google Scholar
Nasibulina, L. I., Koltsova, T. S., Joentakanen, T., Nasibulin, A. G., Tolochko, O. V., Malm, J. E. M., Karppinen, M. J., Kauppinen, E. I., Carbon 48, 4556 (2010).CrossRefGoogle Scholar