Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:36:56.911Z Has data issue: false hasContentIssue false

Novel Methods for Deposition of Boron Carbide Films

Published online by Cambridge University Press:  21 February 2011

J. Mazurowski
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244–1130 General Electric Co., Electronics Laboratory, Electronics Park, Syracuse, New York, 13221
S. Baral-Tosh
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244–1130
G. Ramseyer
Affiliation:
General Electric Co., Electronics Laboratory, Electronics Park, Syracuse, New York, 13221
J.T. Spencer
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, New York 13244–4100
Yoon-Gi Kim
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244–1130
P.A. Dowben
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244–1130
Get access

Abstract

By combining pentaborane (B5H9) and decarborane (B10H14) with methanein a plasma reactor, a variety of boron-carbides can be made over a wide range of compositions. The resulting thin films have uniform composition and appear to be polycrystalline.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tomanek, D., Wentcovitch, R.M., Louie, S.G. and Cohen, M.L., Phys. Rev. B37, 3134 (1988).Google Scholar
[2] Wood, C., in Boron-Rich Solids, AlP Conf. Proc. 140, 362 (1986).Google Scholar
[3] Budinski, H.G., Surface Engineering for Wear Resistance, Prentice Hall, New York, 1988.Google Scholar
[4] Ashbee, K.H.G., Acta Metall. 12, 1079 (1971).Google Scholar
[5] Copeland, G.L., DuBose, C.K.H., Donnelly, R.G. and Martin, W.R., J. Nucl. Matter. 43, 126 (1972).Google Scholar
[6] Jostons, A. and DuBose, C.K.H., J. Nucl. Mater. 44, 91 (1972).Google Scholar
[7] Hollenberg, G.W. and Cummings, W.V., J. Am. Ceram. Soc. 63, 376 (1980).Google Scholar
[8] Stoto, T., Zuppirolli, L., and Pelissier, J., Radiation Effects, 90, 161 (1985).Google Scholar
[9] Badzian, A.R., Mat. Res. Bull. 16, 1385 (1981).Google Scholar
[10] Satou, M., Yamaguchi, K., U.S. Patent 4656052 (1987).Google Scholar
[11] Badzian, A.R., Appl. Phys. Lett. 53, 2495 (1988).Google Scholar
[12] Jansson, U., and Carlsson, J.-O., Thin Solid Films 124, 101 (1985).Google Scholar
[13] Olsson, M., Söderberg, S., Stridh, B., Jansson, U., and Carlsson, J.-O., Thin Solid Films 172, 95 (1989).Google Scholar
[14] Jansson, U., Carlsson, J.-O., and Stridh, , J. Vac. Sci. Technol. A5, 2823 (1987).Google Scholar
[15] Vandenbulcke, L. and Vuillard, G., J. Less Common Metals 82, 49 (1981).Google Scholar
[16] Vandenbulcke, L., Herbin, R., Batuscu, M., and Barandon, J.N., J. Less Common Metals 80, 7 (1981).Google Scholar
[17] Kevill, D.N., Rissmann, T.J., Brewe, D. and Wood, C., J. Cryst. Growth 74, 210 (1986).Google Scholar
[18] Mierzejewska, S. and Niemyski, T., J. Less Common Metals 8 368 (1965).Google Scholar
[19] Ploog, K. and Amberger, E., J. Less Common Metals 23, 33 (1971).Google Scholar
[20] Amberger, E., Druminski, M., and Ploog, K., J. Less Common Metals 23, 43 (1971).Google Scholar
[21] Ploog, K., J Less Common Metals 31, 177 (1973); J. Less 35 115 (1974); 3. Less Common Metals 35, 131 (1974); J. Crystal Growth 25/25, 197 (1974).Google Scholar
[22] Kim, Yoon-Gi, Dowben, P.A., Spencer, J.T. and Ramseyer, G.O., J. Vac. Sci. Technol. A7, 2796 (1989).Google Scholar
[23] Zhang, Zhongju, Kim, Yoon-Gi, Dowben, P.A. and Spencer, J.T., Proc. Mat. Res. Soc. 131, 407 (1989).Google Scholar
[24] Callery Chemical Company, Technical Bulletin No. CM-070, 1971.Google Scholar
[25] Mazurowski, J., Ramseyer, G., Kim, Yoon-Gi and Dowben, P.A., in preparation.Google Scholar