Published online by Cambridge University Press: 15 February 2011
NTO is an explosive of current interest. It has been evaluated as an insensitive component to replace RDX in the bomb fill, and as a major ingredient for the auto air bag system. The crystal structure of the β from of NTO has been determined by single-crystal X-ray methods. The unit cell is monoclinic, space group P21/c, with a = 9.326, b = 5.515, c = 9.107 Å, β = 100.77°. There are four molecules in the cell, density 1.878 g/cm3. Infinite extension of H-bonding in two-dimensional sheets occurs in the monoclinic form. Bond lengths and angles all have normal values.
Efforts have been made to determine the crystal structure of α-NTO. However, a structure refined only to R = 17% was obtained, probably due to some kind of twinning about the crystal needle axis. The unit cell is triclinic, space group P1, with a = 5.12, b = 10.30, c = 17.9 Å, α = 106.7°, β= 97.7°, γ = 90.2°. There are eight molecules in the cell, density 1.92 g/cm3. Ribbons of NTO molecules formed by a relatively strong network of hydrogen bonds are observed. It was found that α-NTO is the stable, dominating form. A variety of techniques have been chosen to identify the two polymorphs.