Published online by Cambridge University Press: 17 March 2011
ALD WNC nucleation and growth was observed strongly affected by differentsubstrate materials and surface chemistries. Nucleation was inhibited onmost pristine low k surfaces, which is attributed to low concentrations ofchemisorption sites (Si-OH). Plasma treatments were used to alter thesurface chemistry to improve nucleation. Surface closure and surfaceroughness of the WNC layer were found to strongly correlate with startingsurface condition. Resistivities of the resulting films were also founddependent on starting surface treatment. But the relationship between Wcontent of the films, surface treatment and resistivity was not fullycomprehended.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.