Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T09:32:05.385Z Has data issue: false hasContentIssue false

NV-Diamond Magnetometer Using Electron Irradiation

Published online by Cambridge University Press:  15 January 2013

Edwin Kim
Affiliation:
Cypress Semiconductor, 1850 Ramtron Drive, Colorado Springs, CO 80921, USA
Victor M. Acosta
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA Department of Physics, University of California, Berkeley, CA 94720-7300, USA
Erik Bauch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720-7300, USA Technische Universität Berlin, Hardenbergstrasse 28, 10623 Berlin, Germany
Dmitry Budker
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720-7300, USA Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Philip R. Hemmer
Affiliation:
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA
Get access

Abstract

Nitrogen-vacancy (NV) center in diamond is an emerging system for quantum-logic device and sensor applications. The key feature of the NV center is the ability of spin manipulation at room temperature. We apply a wide range of electron irradiation to generate the NV centers in nitrogen-rich diamond for creating best sensitivity. The NV0 and NV concentrations in electron irradiated diamond are determined from optical spectra. Additionally, electron spin resonance (ESR) has also proven to be an effective method for probing the electron spin transition between |ms=±1> and |ms=0> states of the NV centers. A study of ESR frequency shift and signal broadening and magnetometer sensitivity as a function of electron irradiation dose has been conducted. The research presented herein is a demonstration of minimum detectable magnetic field tailoring required for future-generation high-sensitivity diamond magnetometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gurudev Dutt, M. V., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A. S., Hemmer, P. R., and Lukin, M. D., Science 316, 1312 (2007).10.1126/science.1139831CrossRefGoogle Scholar
Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., Jiang, L., Gurudev Dutt, M. V., Togan, E., Zibrov, A. S., Yacoby, A., Walsworth, R. L., and Lukin, M. D., Nature 455, 644 (2008).10.1038/nature07279CrossRefGoogle Scholar
Maletinsky, P., Hong, S., Grinolds, M. S., Hausmann, B., Lukin, M. D., Walsworth, R. L., Loncar, M., and Yacoby, A., Nature Nanotech. 7, 320324 (2012).10.1038/nnano.2012.50CrossRefGoogle Scholar
Loubser, J. H. N. and van Wyk, J. A., Diamond Research, vol. 11 (Industrial Diamond Information Bureau, London, 1977).Google Scholar
Manson, N. B. and McMurtrie, R. L., J. Lumin. 127, 98 (2007).10.1016/j.jlumin.2007.02.013CrossRefGoogle Scholar
Taylor, J. M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P. R., Yacoby, A., Walsworth, R., and Lukin, M. D., Nature Phys. 4, 810 (2008).10.1038/nphys1075CrossRefGoogle Scholar
Acosta, V. M., Bauch, E., Ledbetter, M. P., Santori, C., Fu, K. M. C., Barclay, P. E., Beausoleil, R. G., Linget, H., Roch, J. F., Treussart, F., Chemerisov, S., Gawlik, W., and Budker, D., Phys. Rev. B 80, 115202 (2009).10.1103/PhysRevB.80.115202CrossRefGoogle Scholar
Koike, J., Parkin, D. M., and Mitchell, T. E., Appl. Phys. Lett. 60, 1450 (1992).10.1063/1.107267CrossRefGoogle Scholar
Campbell, B. and Mainwood, A., Phys. Status Solidi A 181, 99 (2000).10.1002/1521-396X(200009)181:1<99::AID-PSSA99>3.0.CO;2-53.0.CO;2-5>CrossRef3.0.CO;2-5>Google Scholar
Schwartz, J., Aloni, S., Ogletree, D.F., and Schenkel, T., New J. Phys. 14, 043024 (2012).10.1088/1367-2630/14/4/043024CrossRefGoogle Scholar
Davies, G., Lawson, S. C., Collins, A. T., Mainwood, A., and Sharp, S. J., Phys. Rev. B 46, 13157 (1992).10.1103/PhysRevB.46.13157CrossRefGoogle Scholar
Jelezko, F., Tietz, C., Gruber, A., Popa, I., Nizovtsev, A., Kilin, S., and Wrachtrup, J., Single Mol. 2, 255 (2001).10.1002/1438-5171(200112)2:4<255::AID-SIMO255>3.0.CO;2-D3.0.CO;2-D>CrossRef3.0.CO;2-D>Google Scholar
Loubser, J. H. N. and van Wyk, J. A., Rep. Prog. Phys. 41, 1201 (1978).10.1088/0034-4885/41/8/002CrossRefGoogle Scholar
Acosta, V. M., Bauch, E., Ledbetter, M. P., Waxman, A., Bouchard, L. S., and Budker, D., Phys. Rev. Lett. 104, 070801 (2010).10.1103/PhysRevLett.104.070801CrossRefGoogle Scholar
Jiménez-Martínez, R., Griffith, W. C., Wang, Y.-J., Knappe, S., Kitching, J., Smith, K., and Prouty, M. D., IEEE Trans. Instrum. Meas. 59, 372 (2010).10.1109/TIM.2009.2023829CrossRefGoogle Scholar
Taylor, M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P. R., Yacoby, A., Walsworth, R., and Lukin, M. D., Nature Physics 4, 810 (2008).10.1038/nphys1075CrossRefGoogle Scholar
Budker, D. and Romalis, M. V., Optical Magnetometry, Nature Phys. 3, 227 (2007).10.1038/nphys566CrossRefGoogle Scholar