Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:12:42.505Z Has data issue: false hasContentIssue false

On the Fracture Toughness of Polysilicon MEMS Structures

Published online by Cambridge University Press:  17 March 2011

H. Kahn
Affiliation:
Department of Materials Science and Engineering, University Cleveland, OH 44106, U.S.A.
R. Ballarini
Affiliation:
Department of Civil Engineering Case Western Reserve University Cleveland, OH 44106, U.S.A.
A.H. Heuer
Affiliation:
Department of Materials Science and Engineering, University Cleveland, OH 44106, U.S.A.
Get access

Abstract

The mechanical properties of micromachined polysilicon are of great interest to designers of microelectromechanical systems (MEMS) devices. Numerous investigations have been carried out to determine the strength of MEMS-fabricated polysilicon structures, and the experimental results vary widely, depending on the experimental techniques, specimen geometries, and processing conditions. In order to determine whether these variations are inherent to all mechanical properties of MEMS materials, the fracture toughness, Kcrit, of micromachined polysilicon has been investigated, using a wide range of material microstructures (microstructure is used here in the Materials Science sense to mean the grain structure visible in a microscope, and not in the MEMS sense to mean small structures). Since fracture toughness is a fundamental materials property, whether or not it varies with microstructure and processing is an interesting question. We have confirmed that Kcrit is not a microstructure-sensitive property, using surface-micromachined specimens with sharp pre-cracks which are integrated with electrostatic actuators. The measured Kcrit is 1.0±0.1 MPa √m for a wide range of miscrostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sharpe, W.N., Brown, S., Johnson, G.C., and Knauss, W., in Microelectromechanical Structures for Materials Research, ed. by Brown, S., Gilbert, J., Guckel, H., Howe, R., Johnson, G., Krulevitch, P., and Muhlstein, C. (Mater. Res. Soc. Proc. 518, Warrendale, PA 1998), pp. 5765.Google Scholar
2. Tsuchiya, T., Tabata, O., Sakata, J., and Taga, Y., J. Microelectromech. Syst., 7, pp. 106113 (1998).Google Scholar
3. LaVan, D.A. and Buchheit, T.E., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, ed. By Boer, M.P. de, Heuer, A.H., Jacobs, S.J., and Peeters, E. (Mater. Res. Soc. Proc. 605, Warrendale, PA 2000), pp. 1924.Google Scholar
4. Ericson, F. and Schweitz, J.-A., J Appl. Phys., 68, pp. 58405844 (1990).Google Scholar
5. Sharpe, W.N., Turner, K.T., and Edwards, R.L., Experimental Mech., 39, pp. 162170 (1999).Google Scholar
6. Greek, S., Ericson, F., Johansson, S., Furtsch, M., and Rump, A., J. Micromech. Microeng., 9, pp. 245251 (1999).Google Scholar
7. Yi, T., Li, L., and Kim, C.-J., Sensors and Actuators A, 83, pp. 172178 (2000).Google Scholar
8. Biebl, M. and Philipsborn, H. von, Proc. of the 8th Intl. Conf. on Solid-State Sensors and Actuators, Transducers 95, pp. 7275 (1995).Google Scholar
9. Chasiotis, I. and Knauss, W.G., Proc. of the SPIE Conf. on Materials and Device Characterization in Micromachining, 3512, pp. 6675 (1998).Google Scholar
10. Guckel, H., private communication, November 29, 1999.Google Scholar
11. Sharpe, W.N. Jr., Yuan, B., Vaidyanathan, R., and Edwards, R.L., Proc. of the Micro Electro Mechanical Systems Workshop, MEMS 97, (1997).Google Scholar
12. Sharpe, W.N. Jr., Jackson, K., Coles, G., LaVan, D.A., and Mali, R., presented at the MRS Fall 2000 meeting, Boston, MA. Google Scholar
13. Jones, P.T., Johnson, G.C., and Howe, R.T., in Microelectromechanical Structures for Materials Research, ed. by Brown, S., Gilbert, J., Guckel, H., Howe, R., Johnson, G., Krulevitch, P., and Muhlstein, C. (Mater. Res. Soc. Proc. 518, Warrendale, PA 1998), 197202.Google Scholar
14. Glass, S.J., LaVan, D.A., Buchheit, T.E., and Jackson, K., submitted to Alfred Fractography of Glasses and Ceramics Conf. Proc., July 2000.Google Scholar
15. Dirras, G.F. and Hemker, K.J., presented at the MRS Fall 2000 meeting, Boston, MA. Google Scholar
16. Koskinen, J., Steinwall, J.E., Soave, R., and Johnson, H.H., J. Micromech. Microeng., 3, pp. 1317 (1993).Google Scholar
17. Tsuchiya, T, Sakata, J., and Taga, Y., in Thin-films: stresses and mechanical properties VII, ed. by Cammarata, R.C., Natasi, M., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Proc. 505, Warrendale, PA 1998), pp. 285290.Google Scholar
18. Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L., and Heuer, A.H., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, ed. By Boer, M.P. de, Heuer, A.H., Jacobs, S.J., and Peeters, E. (Mater. Res. Soc. Proc. 605, Warrendale, PA 2000), pp. 2530.Google Scholar
19. Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L., and Heuer, A.H., Sensors and Actuators A, 82, 274280 (2000).Google Scholar
20. Chen, C.P. and Leipold, M.H., Amer. Ceramic Soc. Bull., 59, 469472 (1980).Google Scholar
21. Chen, C.P., Leipold, M.H., and Helmreich, D., J. Amer. Ceramic Soc., 65, C49 (1982).Google Scholar
22. Yang, J., Kahn, H., He, A.Q., Phillips, S.M., and Heuer, A.H., J. Microelectromech. Syst., 9, pp. 485494 (2000).Google Scholar