Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T08:15:22.919Z Has data issue: false hasContentIssue false

On the Luminescence of VLS-grown GaAs-AlGaAs Core-Shell Nanowires and its Dependence on MOVPE Growth Conditions

Published online by Cambridge University Press:  31 January 2011

Paola Prete
Affiliation:
paola.prete@le.imm.cnr.it, IMM-CNR, Lecce, Italy
Nico Lovergine
Affiliation:
nico.lovergine@unisalento.it, University of Salento, Innovation Engineering, Lecce, Italy
Ilio Miccoli
Affiliation:
ilio.miccoli@unisalento.it, University of Salento, Innovation Engineering, Lecce, Italy
Fabio Marzo
Affiliation:
fabio.marzo@unisalento.it, University of Salento, Innovation Engineering, Lecce, Italy
Joan S. Burger
Affiliation:
jb3842@drexel.edu, University of Salento, Innovation Engineering, Lecce, Italy
Giancarlo Salviati
Affiliation:
salviati@imem.cnr.it, IMEM-CNR, Parma, Italy
Laura Lazzarini
Affiliation:
lazzarini@imem.cnr.it, IMEM-CNR, Parma, Italy
Get access

Abstract

We report on the photoluminescence (PL) of GaAs-Al0.32Ga0.68As core-shell nanowires grown by MOVPE, and their dependence on the precursors V:III molar ratio utilised in the vapor during growth. It is shown that the PL emission of the GaAs nanowire core red-shifts with decreasing the V:III ratio from 30:1 to 4:1, an effect tentatively ascribed to the build-up of a space-charge region at the core-shell hetero-interface, the latter associated to the unintentional incorporation of impurities, namely C in GaAs and Si in AlGaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wagner, R.S., and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
2 Sköld, N., Karlsson, L.S., Larsson, M.W., Pistol, M.-E., Seifert, W., Trägårdh, J., and Samuelson, L., Nano Lett. 5, 19431947 (2005).Google Scholar
3 Titova, L.V., Hoang, T.B., Jackson, H.E., Smith, L.M., Yarrison-Rice, J.M., Kim, Y., Joyce, H.J., Tan, H.H., and Jagadish, C., Appl. Phys. Lett. 89, 173126, 13 (2006).Google Scholar
4 Noborisaka, J., Motohisa, J., Hara, S., and Fukui, T., Appl. Phys. Lett. 87, 093109, 13 (2005).Google Scholar
5 Prete, P. Marzo, F., Paiano, P., Lovergine, N., Salviati, G., Lazzarini, L., and Sekiguchi, T., J. Cryst. Growth 310, 51145118 (2008).Google Scholar
6 Paiano, P., Prete, P., Lovergine, N., and Mancini, A.M., J. Appl. Phys. 100, 094305, 14 (2006).Google Scholar
7 Miccoli, I., Prete, P., and Lovergine, N., to be reported elsewhere.Google Scholar
8 Richter, W., University of Rome “Tor Vergata“, private communication.Google Scholar
9 Su, W.S., Chen, T.T., Cheng, C.L., Fu, S.P., Chen, Y.F., Hsiao, C.L., and Tu, L.W., Nanotechnol. 19, 235401, 15 (2008).Google Scholar
10Data from Sigma-Aldrich Fine Chemicals High-Tech (UK).Google Scholar
11 Prete, P., Miccoli, I., Marzo, F., and Lovergine, N., to be reported elsewhere.Google Scholar