Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:52:51.549Z Has data issue: false hasContentIssue false

Optical Absorption Spectra Under DC Light Bias in Undoped a-Si:H

Published online by Cambridge University Press:  21 February 2011

J. Z. Liu
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
J. P. Conde
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
G. Lewen
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

Under a dc light bias, the ac constant photocurrent method (CPM) yields an anomalous subgap optical absorption over that without the bias. When the intensity of the bias is high, an absorption band appears. However, absorption measured by ac photothermal deflection spectroscopy (PDS) is much less affected by the bias. A simple model qualitatively explains the effect on the PDS spectra and suggests that the anomalous CPM absorption is an apparent one which represents a variation of the recombination lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jackson, W., Amer, N.M., Boceara, A.C., and Fournier, D., Appl. Opt. 20, 1333 (1981)Google Scholar
[2] Vanecek, M., Kocka, J., Stuchlík, J., Kozisek, Z., and Triska, A., Solid State Comm. 39, 1199 (1981);CrossRefGoogle Scholar
Vanecek, M., Kocka, J., Stuchlík, J., Kozisek, Z., Stika, O., and Triska, A., Solar Energy Mater. 8, 411 (1983).CrossRefGoogle Scholar
[3] Simmons, J.G. and Taylor, G.W., Phys. Rev. B 4, 502 (1971);Google Scholar
Taylor, G.W. and Simmons, J.G., J. Non-Cryst. Solids 8–10, 940 (1972).Google Scholar
[4] Roca i Cabarrocas, P., Chevrier, J.B., Hue, J., Lloret, A., Parey, J.Y., and Schmitt, J.P.M., J. Vac. Sci. Technol. A 9, 2331 (1991).Google Scholar
[5] Roca i Cabarrocas, P., Vanderhaghen, R., bouizem, Y., Theye, M.L., Mencaraglia, D., Djebbour, Z., Sib, J., Kleider, J.P., Longeaud, C., and Glodt, O., Proc. 10th European Photovoltaic Solar Energy Conference, ed. by Luque, A., Sala, G., Palz, W., Dos Santos, G., and Helm, P., (Kluwer, Boston, 1991).Google Scholar
[6] Aljishi, S., Ley, L., Chu, V., Tanaka, S., Smith, Z.E., and Wagner, S., Proc. 19th Intl. Conf. Phys. Semicon, ed. by Zawadzki, W., (Institute of Physics, Wasaw, 1988), p. 1637.Google Scholar
[7] Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
[8] Wronski, C. R., Lee, S., Hicks, M., and Kumar, S., Phys. Rev. Lett. 63, 1420 (1989).Google Scholar
[9] Lotter, E., Schubert, M.B., Heintze, M., and Bauer, G.H., Amorphous Silicon Technology-1991 MRS Symposium Proc, ed. by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C., and LeComber, P.G., (Materials Research Society, Pittsburgh, 1991), p. 229.Google Scholar
[10] Wronski, C.R. and Daniel, R.E., Phys. Rev. B 23, 794 (1981).Google Scholar
[11] Persans, P.D., Phil. Mag. B 46, 435 (1982).Google Scholar