Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T23:58:48.314Z Has data issue: false hasContentIssue false

Optical and Structural Investigation of AlN Grown on Sapphire with Reactive MBE Using RF Nitrogen or Ammonia

Published online by Cambridge University Press:  01 February 2011

F. Yun
Affiliation:
Department of Electrical Engineering and Physics, Virginia Commonwealth University Richmond, VA 23284
L. He
Affiliation:
Department of Electrical Engineering and Physics, Virginia Commonwealth University Richmond, VA 23284
F. Xiu
Affiliation:
Department of Electrical Engineering and Physics, Virginia Commonwealth University Richmond, VA 23284
H. Morkoç
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
S. Bai
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
Y. Shishkin
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
R. P. Devaty
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
W. J. Choyke
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
Get access

Abstract

AlN epitaxial layers in a thickness range of 0.065 to 0.6 microns have been grown on double-side polished c-plane sapphire by molecular beam epitaxy (MBE) using either RF nitrogen or ammonia as the nitrogen source. The samples were characterized by XRD, room temperature (RT) and low temperature (2K) optical absorption (transmission) measurements. The XRD (0002) peak FWHM diminishes from 380 arcsec to 84 arcsec when the thickness of the AlN films is increased from 65 nm towards 0.6 μm. All the samples grown with ammonia (NH3), representing N-rich conditions, exhibited optical bandgap exceeding 6 eV at RT. For samples grown with RF nitrogen source, we find that higher nitrogen flow (partial pressure of 8.3-9.4 × 10-5 Torr) results in optical bandgap values larger than 6.0 eV, regardless of the XRD results. The bandgap is found to be smaller than 6.0 eV for the samples grown with lower nitrogen partial pressure (1.0-3.5 x 10-5 Torr), regardless of sample thickness and the XRD data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Properties of Advanced Semiconductor materials, edited by Levinshtein, M. E., Ramyantsev, S. L., and Shur, M. S. (Wiley, New York, 2001).Google Scholar
2 Tang, X., Hossain, F., Wongchotigul, K., and Spencer, M. G., Appl. Phys. Lett. 72, 1501 (1998).Google Scholar
3 Li, J., Nam, K. B., Nakami, M. L., Lin, J.Y., and Jiang, H. X., Appl. Phys. Lett. 81, 3365 (2002).Google Scholar
4 Nam, K. B., Li, J., Nakami, M. L., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 82, 1694 (2003).Google Scholar
5 Kuokstis, E., Zhang, J., Fareed, Q., Yang, J.W., Simin, G., Khan, M. Asif, Gaska, R., Shur, M., Rojo, C., and Schowalter, L., Appl. Phys. Lett. 81, 2755 (2002).Google Scholar
6 Onuma, T., Chichibu, S. F., Sota, T., Asai, K., Sumiya, S., Shibata, T., and Tanaka, M., Appl. Phys. Lett. 81, 652 (2002).Google Scholar
7 Brunener, D., Angerer, H., Bustarret, E., Freudenberg, F., Hppler, R., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997).Google Scholar
8 Shishkin, Y., Devaty, R.P., Choyke, W.J., Yun, F., King, T., and Morkoć, H., phys. stat. sol. A 188, 591 (2001).Google Scholar
9 Teofilov, N., Thonke, K., Sauer, R., Ebling, D.G., Kirste, L., and Benz, K.W., Diamond and Rel. Mat. 10, 1300 (2001).Google Scholar
10 Tungasmita, S., Persson, P.O. Å., Järrendahl, K., Hultman, L., and Birch, J., Mater. Sci. Forum Vols. 338-342, 1519 (2000).Google Scholar
11 Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenbergm, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973); P. B. Perry and R. F. Rutz, Appl. Phys. Lett. 33, 319 (1978).Google Scholar
12 Morkoç, H., Nitride Semiconductors and Devices, Springer, 1999.Google Scholar