Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T10:56:26.812Z Has data issue: false hasContentIssue false

Optical Gain in Bgan Lattice-Matched to (0001) 6H-SiC

Published online by Cambridge University Press:  10 February 2011

T. Honda
Affiliation:
Dept. of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192, Japan, ctl 1761 @ns.kogakuin.ac.jp
M. Tsubamoto
Affiliation:
Dept. of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192, Japan, ctl 1761 @ns.kogakuin.ac.jp
Y. Kuga
Affiliation:
Dept. of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192, Japan, ctl 1761 @ns.kogakuin.ac.jp
H. Kawanishi
Affiliation:
Dept. of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192, Japan, ctl 1761 @ns.kogakuin.ac.jp
Get access

Abstract

The optical gain of a BGaN ternary system lattice-matched to 6H-SiC was estimated. The parameters used in this estimation, such as effective mass and a bandgap energy, were estimated according to Harrison's theory. The optical gain was estimated using the density matrix theory with intraband relaxation broadening. The transparency carrier density of BGaN is slightly only smaller than that of GaN. It may be possible to fabricate a BGaN-based semiconductor laser operating in the UV spectral region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Sota, S., Sakai, H., Tanaka, T. and Koide, M., Jpn. J. Appl. Phys. 34, pp. L1517 - L1519 (1995).Google Scholar
2. Iga, K.in Proceedings of the International Symposium on Blue Laser and Light Emitting Diodes, edited by Yoshikawa, A. et al., Ohmsha, Tokyo, 1996, pp. 263266.Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, pp. L74 - L76 (1996).Google Scholar
4. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H., Appl. Phys. Lett. 69, pp. 40564058 (1996).Google Scholar
5. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 36, pp. L382 - L385 (1997).Google Scholar
6. Honda, T., Katsube, A., Sakaguchi, T., Koyama, F. and Iga, K., Jpn. J. Appl. Phys. 34, pp. 35273532 (1995).Google Scholar
7. Kawanishi, H., Haruyama, M., Shirai, T. and Suematsu, Y., Proc. SPIE 2994, pp. 52 –59 (1997).Google Scholar
8. Asada, M. and Suematsu, Y., IEEE J. Quantum Electron. QE-20, pp. 434442 (1985).Google Scholar
9. Honda, T., Miyamoto, T., Sakaguchi, T., Kawanishi, H., Koyama, F. and Iga, K., Proc. ICNS'97, Tokushima, P121, 1997.Google Scholar
10. Harrison, W. A., Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications Inc., New York, 1989.Google Scholar
11. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, pp. 327329 (1969).Google Scholar
12. Sakai, S., Ueta, Y. and Terauchi, Y., Jpn. J. Appl. Phys. 32, pp. 44134417 (1993).Google Scholar
13. Suzuki, M. and Uenoyama, T., J. Appl. Phys. 80, pp. 68686874 (1996).Google Scholar