Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:15:26.189Z Has data issue: false hasContentIssue false

Optical Properties of Wurtzite GaN and ZnO Quantum Dots

Published online by Cambridge University Press:  21 March 2011

Vladimir A. Fonoberov
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering, University of California-Riverside, Riverside, California 92521, U.S.A.
Alexander A. Balandin
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering, University of California-Riverside, Riverside, California 92521, U.S.A.
Get access

Abstract

We have investigated exciton states in wurtzite GaN/AlN and ZnO quantum dots. A strong piezoelectric field in GaN/AlN quantum dots is found to tilt conduction and valence bands, thus pushing the electron to the top and the hole to the bottom of the GaN/AlN quantum dot. As a result, the exciton ground state energy in GaN/AlN quantum dots with heights larger than 3 nm exhibits a red shift with respect to bulk GaN energy gap. It is shown that the radiative decay time in GaN/AlN quantum dots is large and increases from 0.3 ns for quantum dots with height 1.5 nm to 1.1×103 ns for the quantum dots with height 4.5 nm. On the contrary, the electron and the hole are not separated in ZnO quantum dots. Moreover, a relatively thick “dead layer” is formed near the surface of ZnO quantum dots. As a result, the radiative decay time in ZnO quantum dots is small and decreases from 73 ps for quantum dots with diameter 1.5 nm to 29 ps for the quantum dots with diameter 6 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fonoberov, V. A., Pokatilov, E. P., and Balandin, A. A., J. Nanosci. Nanotechnol. 3, 253 (2003).Google Scholar
2. Fonoberov, V. A. and Balandin, A. A., J. Appl. Phys. 94, 7178 (2003).Google Scholar
3. Fonoberov, V. A. and Balandin, A. A., J. Vac. Sci. Technol. B, in press (2004).Google Scholar
4. Fonoberov, V. A., Pokatilov, E. P., and Balandin, A. A., Phys. Rev. B 66, 085310 (2002).Google Scholar
5. Widmann, F., Simon, J., Daudin, B., Feuillet, G., Rouviere, J. L., Pelekanos, N. T., and Fishman, G., Phys. Rev. B 58, R15989 (1998).Google Scholar
6. Bahnemann, D. W., Kormann, C., and Hoffmann, M. R., J. Phys. Chem. 91, 3789 (1987).Google Scholar
7. Lambrecht, W. R. L., Rodina, A. V., Limpijumnong, S., Segall, B., and Meyer, B. K., Phys. Rev. B 65, 075207 (2002).Google Scholar
8. Muelenkamp, E. A., J. Phys. Chem. B 102, 5566 (1998).Google Scholar
9. Wood, A., Giersig, M., Hilgendorff, M., Vilas-Campos, A., Liz-Marzan, L. M., and Mulvaney, P., Aust. J. Chem. 56, 1051 (2003).Google Scholar
10. Simon, J., Pelekanos, N. T., Adelmann, C., Martinez-Guerrero, E., Andre, R., Daudin, B., Dang, L. S., and Mariette, H., Phys. Rev. B 68, 035312 (2003).Google Scholar