Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:57:09.839Z Has data issue: false hasContentIssue false

Optical stability of small-molecule thin-films determined by Photothermal Deflection Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Marco Stella
Affiliation:
marco.stella2@gmail.com, Universidad de Barcelona, Barcelona, Spain
Monica Beatriz Della Pirriera
Affiliation:
dellapir@eel.upc.edu, Universidad Politécnica de Cataluña, Electronic Engineering, Jordi Girona 31, Barcelona, 08034, Spain
Joaquim Puigdollers
Affiliation:
jpuigd@eel.upc.edu, Universidad Politecnica de Cataluña, Barcelona, Barcelona, Spain
Joan Bertomeu
Affiliation:
joan.bertomeu@ub.edu, Universidad de Barcelona, Barcelona, Spain
Cristobal Voz
Affiliation:
cvoz@eel.upc.edu, Universidad Politecnica de Cataluña, Barcelona, Spain
Jordi Andreu
Affiliation:
jordi.andreu@ub.edu, Universidad de Barcelona, Barcelona, Spain
Ramon Alcubilla
Affiliation:
alcubilla@eel.upc.edu, Universidad Politecnica de Cataluña, Barcelona, Spain
Get access

Abstract

In this paper the optical absorption properties of n-type C60 and PTCDA, and p-type CuPc small molecule semiconductors are investigated by optical transmission and Photothermal Deflection Spectroscopy (PDS). The results show the usual absorption bands related to HOMO-LUMO transitions in the high absorption region of the transmission spectra. PDS measurements also evidences exponential absorption shoulders with different characteristic energies. In addition, broad bands in the low absorption level are observed for C60 and PTCDA thin-films. These bands have been attributed to contamination due to air exposure. In order to get deeper understanding of the degradation mechanisms single and co-evaporated thin-films have been characterized by PDS. The dependence of the optical coefficient on exposure to light and air have been studied and correlated to the structural properties of the films (as measured by X-Ray Diffraction Spectroscopy). The results show that CuPc and PTCDA are quite stable against light and air exposure, while C60 shows important changes in its absorption coefficient. The bulk heterojunctions show stability in agreement with what observed for single layers, since the absorption coefficient of CuPc:PTCDA is almost not altered after the degradation treatments, while CuPc:C60 shows changes for low energy values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yang, F. Shtein, M. Forrest, S.R. Nature Materials 4, p. 37 (2005).Google Scholar
2 Farag, A.A.M. Optics & Laser Technology 39, p.728, (2007).Google Scholar
3 Haddock, J.N., Zhang, X. Domercq, B. Kippelen, B. Organic Electronics 6, 182187 (2005).Google Scholar
4 Uchida, S. Xue, J. Rand, B. P. Forrest, S. R. Appl. Phys. Lett. 84, 3013,(2004).Google Scholar
5 Peumans, P. and Forrest, S. R. App. Phys. Lett. Vol. 79, 126 (2001).Google Scholar
6 Xue, J.G. Rand, B.P. Uchida, S. Forrest, S.R. Adv. Mater. 17, 66 (2005).Google Scholar
7 Stella, M. Voz, C. Puigdollers, J. Rojas, F. Fonrodona, M. Escarré, J., Asensi, J.M. Bertomeu, J. Andreu, J. Journal of Non-Crystaline Solids 352, 1663, (2006).Google Scholar
8 Voz, C. Puigdollers, J. Cheylan, S. Fonrodona, M. Stella, M. Andreu, J. Alcubilla, R. Thin Solids Films 515, 7675, (2007).Google Scholar
9 Xahin, Y. Alem, S. Bettignies, R. de, Nunzi, J. Thin Solid Films 476, 340 (2005).Google Scholar
10 Peumans, P., Forrest, S.R. Appl. Phys.Lett. 79, 126,(2001).Google Scholar
11 Shalimova, K.V. “Physics of Semiconductors”, Ed. Mir (1975) p. 268.Google Scholar
12 El-Nahass, M. M., Bahabri, F.S. and Al-Harbi, S.R., Egypt. J. Sol. 24, 1119 (2001).Google Scholar
13 Street, R.A.Hydrogenated Amorphous Silicon”, Cambridge Solid State Science Series (1991), p. 87.Google Scholar
14 Street, R.A.Hydrogenated Amorphous Silicon”, Cambridge Solid State Science Series (1991), p. 88.Google Scholar
15 Gotoh, T. Nonomura, S. Hirata, S. Nitta, S. Appl. Surf. Sci. 113/114, 278281 (1997).Google Scholar
16 Karl, N. Synthetic Metals 133–134, p.649657 (2003).Google Scholar