Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T01:47:44.520Z Has data issue: false hasContentIssue false

Organic Field-Effect Based Devices for Pressure Detection

Published online by Cambridge University Press:  26 February 2011

Ileana Manunza
Affiliation:
ileana.manunza@diee.unica.it, CNR-INFM S3 NanoStructures and BioSystems at Surfaces, CNR-INFM S3 NanoStructures and BioSystems at Surfaces, Via Campi 213/a, Modena, 41100, Italy, +39 070 675 5769, +39 070 675 5782
Annalisa Bonfiglio
Affiliation:
annalisa@diee.unica.it, CNR-INFM S3 NanoStructures and BioSystems at Surfaces, Via Campi 213/a, Modena, 41100, Italy
Get access

Abstract

We describe pressure sensors realised starting from completely flexible organic thin film transistors (OTFTs). A flexible and transparent plastic foil (Mylar) is employed both as substrate and gate dielectric; gold source and drain electrodes are patterned on the upper side of the foil while the gate electrode lies on the opposite side; a vacuum-sublimed pentacene film acts as active layer. The pressure dependence of the output current has been investigated by applying to the gate side of the device a mechanical stimulus by means of a pressurized air flow. Experimental results show a reversible current dependence on pressure; further data analysis suggests that current variations are due to pressure-induced variations of mobility and threshold voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Someya, T., Sekitani, T., Kato, Y., Iba, S., Kawaguchi, H., Sakurai, T., PNAS 101, 9966 (2004).Google Scholar
2. Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., PNAS 102 (35), 12321 (2005).Google Scholar
3. Kawaguchi, H., Someya, T., Sekitani, T., Sakurai, T.,. IEEE J. of Solid State Circuits 40, 177 (2005).Google Scholar
4. Darlinski, G., Böttger, U., Waser, R., Klauk, H., Halik, M., Zschieschang, U., Schmidt, G., Dehm, C.,. J. Appl. Phys. 97, 93708 (2005).Google Scholar
5. Manunza, I., Sulis, A., Bonfiglio, A., Appl. Phys. Lett. 89, 143502 (2006).Google Scholar
6. Bonfiglio, A., Mameli, F., Sanna, O., Appl. Phys. Lett. 82, 3550 (2003).Google Scholar
7. Cosseddu, P., Bonfiglio, A., Appl. Phys. Lett. 88, 23406 (2006).Google Scholar
8. Horowitz, G., J. Mater. Res. 19, 1946 (2004).Google Scholar
9. Pernistich, K.P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D.J., Batlogg, B., Rashid, A.N., Schitter, G., J. Appl. Phys. 96, 6431 (2004).Google Scholar
10. Schroeder, R., Majewski, L.A., Grell, M., Appl. Phys. Lett. 83, 3201 (2003).Google Scholar
11. Lindner, Th., Paasch, G., Scheinert, S., J. Appl. Phys. 98, 114505 (2005).Google Scholar