Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T06:12:10.877Z Has data issue: false hasContentIssue false

Oxygen Activation by N-doped Graphitic Carbon Nanostructures

Published online by Cambridge University Press:  23 February 2015

Benjamin W. Noffke
Affiliation:
Department of Chemistry, Indiana University, Bloomington, IN 47405
Qiqi Li
Affiliation:
Department of Chemistry, Indiana University, Bloomington, IN 47405
Liang-shi Li
Affiliation:
Department of Chemistry, Indiana University, Bloomington, IN 47405
Krishnan Raghavachari
Affiliation:
Department of Chemistry, Indiana University, Bloomington, IN 47405
Get access

Abstract

Fundamental understanding of the oxygen reduction reaction (ORR) electrocatalyzed by nitrogen-doped carbon requires a well-defined structure to correlate structure to function. Well-characterized N-doped graphitic nanostructures derived from benzene derivatives have been synthesized in our group, and shown to catalyze a four-electron ORR under alkaline conditions. Density functional theory calculations have been performed on a model N-doped graphitic nanostructure, C50N2H20, to determine an oxygen activation mechanism. With guidance through an experimentally determined Pourbaix diagram, DFT calculations clearly indicate that the catalyst must undergo a 2e,1H+ reduction to generate a reactive carbanionic intermediate that activates oxygen with a spin inversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Markovic, N., Schmidt, T., Stamenkovic, V. and Ross, P., FUEL CELLS-WEINHEIM- 1(2), 105116 (2001).3.0.CO;2-9>CrossRefGoogle Scholar
Wu, G. and Zelenay, P., Accounts of Chemical Research 46(8), 18781889 (2013).CrossRefGoogle Scholar
Greeley, J., Stephens, I. E. L., Bondarenko, A. S., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chorkendorff, I. and Nørskov, J. K., Nature Chemistry 1(7), 552556 (2009).CrossRefGoogle Scholar
Qu, L., Liu, Y., Baek, J.-B. and Dai, L., ACS Nano 4(3), 13211326 (2010).CrossRefGoogle Scholar
Li, Q., Zhang, S., Dai, L. and Li, L.-s., Journal of the American Chemical Society 134(46), 1893218935 (2012).CrossRefGoogle Scholar
Matter, P. H., Zhang, L. and Ozkan, U. S., Journal of Catalysis 239(1), 8396 (2006).CrossRefGoogle Scholar
Rao, C. V., Cabrera, C. R. and Ishikawa, Y., The Journal of Physical Chemistry Letters 1(18), 26222627 (2010).CrossRefGoogle Scholar
Strelko, V. V., Kartel, N. T., Dukhno, I. N., Kuts, V. S., Clarkson, R. B. and Odintsov, B. M., Surface Science 548 (1-3), 281290 (2004).CrossRefGoogle Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J., (Gaussian, Inc., Wallingford, CT, USA, 2009).Google Scholar
Zhao, Y. and Truhlar, D., Theor Chem Account 120 (13), 215241 (2008).CrossRefGoogle Scholar
Ditchfield, R., Hehre, W. J. and Pople, J. A., The Journal of Chemical Physics 54(2), 724728 (1971).CrossRefGoogle Scholar
Hehre, W. J., Ditchfield, R. and Pople, J. A., The Journal of Chemical Physics 56(5), 22572261 (1972).CrossRefGoogle Scholar
Hariharan, P. C. and Pople, J. A., Theoret. Chim. Acta 28(3), 213222 (1973).CrossRefGoogle Scholar
Hariharan, P. C. and Pople, J. A., Molecular Physics 27(1), 209214 (1974).CrossRefGoogle Scholar
Gordon, M. S., Chemical Physics Letters 76(1), 163168 (1980).CrossRefGoogle Scholar
Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. and Pople, J. A., The Journal of Chemical Physics 77(7), 36543665 (1982).CrossRefGoogle Scholar
Marenich, A. V., Cramer, C. J. and Truhlar, D. G., The Journal of Physical Chemistry B 113(18), 63786396 (2009).CrossRefGoogle Scholar
Tissandier, M. D., Cowen, K. A., Feng, W. Y., Gundlach, E., Cohen, M. H., Earhart, A. D., Coe, J. V. and Tuttle, T. R., The Journal of Physical Chemistry A 102(40), 77877794 (1998).CrossRefGoogle Scholar
Barrett, J., Inorganic Chemistry in Aqueous Solution. (Royal Society of Chemistry, Cambridge :, 2003).Google Scholar
Isse, A. A. and Gennaro, A., The Journal of Physical Chemistry B 114(23), 78947899 (2010).CrossRefGoogle Scholar
Nilsson, A., Pettersson, L. G. and Norskov, J., Chemical bonding at surfaces and interfaces. (Elsevier, 2011).Google Scholar
Seip, M. and Brauer, H. D., Journal of the American Chemical Society 114(12), 44864490 (1992).CrossRefGoogle Scholar
Li, Q., Noffke, B. W., Wang, Y., Menezes, B., Peters, D. G., Raghavachari, K. and Li, L.-s., Journal of the American Chemical Society 136(9), 33583361 (2014).CrossRefGoogle Scholar
Saveant, J. M., Acct. Chem. Res. 26(9), 455461 (1993).CrossRefGoogle Scholar
Valentine, J. S., Foote, C., Liebman, J. F. and Greenberg, A., Active Oxygen in Biochemistry. (Springer London, Limited, Guildford :, 1995).Google Scholar
Palfey, B., Ballou, D. and Massey, V., in Active Oxygen in Biochemistry, edited by Valentine, J., Foote, C., Greenberg, A. and Liebman, J. (Springer US, 1995), pp. 3783.CrossRefGoogle Scholar
Turro, N. J., Modern molecular photochemistry. (Benjamin/Cummings Pub. Co., Menlo Park, Calif. :, 1978).Google Scholar
Lower, S. K. and El-Sayed, M. A., Chemical Reviews 66(2), 199241 (1966).CrossRefGoogle Scholar
McClure, D. S., The Journal of Chemical Physics 20(4), 682686 (1952).CrossRefGoogle Scholar
Mueller, M. L., Yan, X., McGuire, J. A. and Li, L.-s., Nano Letters 10(7), 26792682 (2010).CrossRefGoogle Scholar
Meot-Ner, M., Chem. Rev. 105(1), 213284 (2005).CrossRefGoogle Scholar