Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:11:58.441Z Has data issue: false hasContentIssue false

Parasitic Reactions between Alkyls and Ammonia in OMVPE

Published online by Cambridge University Press:  21 February 2011

C.H Chen
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
H. Liu
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
D. Steigerwald
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
W. Imler
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
C.P. Kuo
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
M.G Craford
Affiliation:
Hewlett-Packard Optoelectronics Division, San Jose, CA 95131; changhua_chen@sj.hp.com
Get access

Abstract

The parasitic reactions between ammonia and commonly used alkyls have been studied in a horizontal OMVPE reactor. The results indicate that parasitic reactions between TMA1 and NH3 is severe, leading to the necessity to grow A1N at low reactor pressure. On the other hand, parasitic reactions between TMGa+NH3 and TMIn+NH3 are not significant and it is possible to grow GaN and GaInN at any reactor pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Noad, J.P. and SpringThorpe, A.J., J. Electron Mater. 9, 601 (1980).Google Scholar
2 Bass, S.J., Pickering, C. and Young, M.L., J. Cryst. Growth 64, 68 (1983).Google Scholar
3 Kuo, C.P., Yuan, J.S., Cohen, R.M., Dunn, J., and Stringfellow, G.B., Appl. Phys. Lett. 44, 550(1984).Google Scholar
4 Ludowise, M., J. Appl. Phys. 58, R31 (1985), and references therein.Google Scholar
5 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, (Associated Press, San Diego, 1989), Section 2.3.Google Scholar
6 Coates, G.E., Green, M.L.H. ad Wade, K., Organometallic Compounds: The Main Group Elements (3rd ed. Meuthen & Co., LTD, London, 1967), Vol. I.Google Scholar
7 Duchemin, J.P., Hirtz, J.P., Razaghi, M., Bonnet, M., and Hersee, S.D., J. Cryst. Growth 55, 64 (1981).Google Scholar
8 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, (Associated Press, San Diego, 1989), Chapter 6.Google Scholar
9 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, (Associated Press, San Diego, 1989), p265.Google Scholar
10 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, (Associated Press, San Diego, 1989), section 6.3.Google Scholar
11 Heinecke, H., Veuhoff, E., Putz, N., Heyyen, M., and Balk, P., J. Electron. Mater. 13, 815(1984).Google Scholar
12 Field, R.J. and Ghandhi, S.K., J. Cryst. Growth 69, 581 (1984).Google Scholar
13 Theodoropoulos, C., Ingle, N.K., Mountziaris, T.J., Chen, Z.-Y., Liu, P., Kioseoglou, G., and Petrou, A., J. Electrochem. Soc. 142, 2086 (1995).Google Scholar
14 Kuech, T.F., Veuhoff, E., Kuan, T.S., Deline, V., and Potemski, R., J. Cryst. Growth 77, 257 (1986).Google Scholar
15 Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209(1989)Google Scholar
16 Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., J. Appl. Phys. 74, 3911 (1993)Google Scholar