Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:59:35.646Z Has data issue: false hasContentIssue false

Performance and Modeling of a Nanostructured Relative Humidity Sensor

Published online by Cambridge University Press:  01 February 2011

Mike Taschuk
Affiliation:
mtaschuk@ece.ualberta.ca, University of Alberta, Electrical and Computer Engineering, 9107 - 116 Street, University of Alberta, Edmonton, AB, Canada T6G 2V4, Edmonton, T6G 2V4, Canada
John Steele
Affiliation:
jjsteele@ece.ualberta.ca, University of Alberta, Electrical and Computer Engineering, 9107 - 116 Street, University of Alberta, Edmonton, AB, Canada T6G 2V4, Edmonton, T6G 2V4, Canada
Mike Brett
Affiliation:
brett@ece.ualberta.ca, University of Alberta, Electrical and Computer Engineering, 9107 - 116 Street, University of Alberta, Edmonton, AB, Canada T6G 2V4, Edmonton, T6G 2V4, Canada
Get access

Abstract

Capacitive humidity sensors were fabricated using interdigitated electrodes coated with amorphous nanostructured TiO2 thin films grown by glancing angle deposition. The sensor exhibited a large change in capacitance, increasing exponentially from ∼ 1 nF to ∼ 1 μF for an increase in relative humidity from 2 % to 92 %. A simple model of the capacitive response and dielectric constant of the devices has been developed and compared to the experimental results. From this comparison, it is clear that the magnitude of the device response observed cannot be explained with bulk dielectric constants or literature values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rittersma, Z.M., Sens. Actuators, A. 96, 196 (2002)Google Scholar
2. Yamazoe, N. and Shimizu, Y., Sens. Actuators, 4, 379 (1983)Google Scholar
3. Li, Y. and Yang, M.J., Sens. Actuators B. 86, 155 (2002)Google Scholar
4. Arai, H. and Seiuama, T., in Humidity Sensors eds. Gopel, W., James, T.A., Kleitz, M., Lundstrom, I. and Seiyama, T. (VCH, 1992)Google Scholar
5. Fenner, R. and Zdankiewicz, E., IEEE Sensors J. 1, 309 (2001)Google Scholar
6. Kang, U. and K.Wise, D., IEEE Trans. Electron Devices, 47, 702 (2000)Google Scholar
7. Fagan, J.G., Amarakoon, V.R.W., Am. Ceram. Soc. Bull. 72, 119 (1993)Google Scholar
8. Traversa, E., Sens. Actuators B, 23, 135 (1995)Google Scholar
9. Chen, Z. and Lu, C., Sens. Lett. 3, 274 (2005)Google Scholar
10. Lee, C.Y. and Lee, G.B., Sens. Lett. 3, 1, (2005)Google Scholar
11. Varghese, O.K. et al. J. Mater. Res. 17, 1162 (2002)Google Scholar
12. Briglin, S.M. and Lewis, N.S., J. Phys. Chem. B 107, 11031 (2003)Google Scholar
13. Qu, W. et al. Sens. Actuators B. 64, 76 (2000)Google Scholar
14. Dick, B. and Brett, M.J., Encyclopedia of Nanoscience and Nanotechnology, p. 703 (2004)Google Scholar
15. Steele, J.J. and Brett, M.J., J. Mater. Sci.: Mater. Electron. 18, 367 (2007)Google Scholar
16. Steele, J.J. et al. IEEE Sensors J. 7, 955 (2007)Google Scholar
17. Steele, J.J. et al. Sens. Actuators B 120, 213 (2006)Google Scholar
18. Laville, C. and Pellet, C., IEEE Sensors J. 2, 96 (2002)Google Scholar
19. Putten, A.F.P. van et al. , IEEE Sensor J. 2, 636 (2002)Google Scholar
20. Tatara, T. and Tsuzaki, K., J. Clin. Monit. 13, 5 (1997)Google Scholar
21. Valman, H.B. et al. , Br. Med. J. 286, 1783 (1983)Google Scholar
22. Kalkan, A.K. et al. , Nanotechnology 16, 1383 (2005)Google Scholar
23. Kalkan, A.K. et al. , J. Appl. Phys. 88, 555 (2000)Google Scholar
24. Kuban, P. et al. , Anal. Chem. 76, 2561 (2004)Google Scholar
25. Morimoto, T. et al. , J. Phys. Chem. 73, 243 (1969)Google Scholar
26. Fubini, B. et al. , Solid State Ionics 32–33, 258 (1989)Google Scholar
27. Henrich, V.E. and Cox, P.A., The Surface Science of Metal Oxides, (Cambridge University Press, 1994)Google Scholar
28. Henderson, M.A., Surf. Sci. Rep. 46, 1 (2002)Google Scholar
29. Qu, W. and Meyer, J.U., Sens. Actuators B 40, 175 (1997)Google Scholar
30. Francia, G. Di et al. , Sens. Actuators B 111–112, 135 (2005)Google Scholar
31. Kalkan, A.K. et al. , IEEE Electron Dev. Lett. 25, 526 (2004)Google Scholar
32. Khanna, V.K. and Nahar, R.K., Appl. Surf. Sci. 28, 247 (1987)Google Scholar
33. Fleming, W.J., Soc. Auto. Eng. Tran. Sec. 2 90, 1656 (1981)Google Scholar
34. Seto, M. et al. , J. Mater. Chem. 12, 2348 (2002)Google Scholar
35. Steele, J.J., Nanostructured Thin Films for Humidity Sensing, Ph.D. Thesis, University of Alberta, Alberta,Canada, 2007 Google Scholar
36. Greenspan, L., J. Res. Natl. Bureau Standards A 81, 89 (1977)Google Scholar
37. Morimoto, T. and Iwaki, T., J. Chem. Soc., Faraday Trans. I 83, 943 (1987)Google Scholar
38. Otter, M.W. den, Sens. Actuators A 96, 140 (2002)Google Scholar
39. Gevorgian, S. et al. , IEE Proc.: Microw. Antennas Propag. 143, 397 (1996)Google Scholar
40. Gevorgian, S. et al. IEEE Trans. Microw. Theory Tech. 44, 896 (1996)Google Scholar
41. Igreja, R. and Dias, C.J., Sens. Actuators A 112, 291 (2004)Google Scholar
42. Sihvola, A., Electromagnetic mixing formulas and applications, p. 256(IEE, London, 1999)Google Scholar
43. Tait, R.N., Thin Solid Films 226, 196 (1993)Google Scholar
44. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, (U.S. Dept. of Commerce, 1972)Google Scholar
45. Schwan, H.P. et al. , J. Chem. Phys. 66, 2626 (1962)Google Scholar
46. Papathanasiou, A.N., Electrochim. Acta 48, 235 (2002)Google Scholar
47. Chew, W.C and Sen, P.N., J. Chem. Phys. 77, 4683 (1982)Google Scholar