Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T11:35:41.463Z Has data issue: false hasContentIssue false

Permeability of Polymer/Clay Nanocomposites

Published online by Cambridge University Press:  11 March 2011

Georgios A. Choudalakis
Affiliation:
Department of Sciences, Technical University of Crete, GR-73100, Chania, Greece
Alexandros D. Gotsis
Affiliation:
Department of Sciences, Technical University of Crete, GR-73100, Chania, Greece
Get access

Abstract

Because of their large interfacial area, the presence of nanoplatelets in the polymeric matrix decelerates the process of diffusion of gases through the material. The particles are impermeable barriers to the diffusing molecules, forcing them to follow complicated paths, increasing, thus, the diffusion length. The barrier properties of the nanocomposites depend on the properties of the polymeric matrix, the volume fraction of the nanoplatelets, their aspect ratio, their orientation, and their interactions with the matrix. The mobility of the molecules is hindered by the crystallinity but it is facilitated by the free volume within the material. The size and shape of the free volume holes in the polymer affect, thus, the rate of diffusion. Interactions between the nanoparticles and the matrix may lower the barrier properties because they may increase the free volume in the material. The estimation of free volume in the nanocomposite is important for the proper choice of components and the manufacturing of nanocomposite coatings with optimum barrier properties. Detailed information about the diffusion mechanisms at atomic and molecular levels can be obtained using the approach of free volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nielsen, L.E., J. Macromol. Sci. A, 1, 929942 (1967).Google Scholar
2. Gusev, A.A., Lusti, H.R., Adv. Mater. 13, 21 (2001)Google Scholar
3. Cussler, E.L., Hughes, S.E., Ward, W.J., Aris, R., J. Membr. Sci. 38, 161174 (1988)Google Scholar
4. Fredrickson, G.H., Bicerano, J., J. Chem. Phys. 110, 21812188 (1999)Google Scholar
5. Bharadwaj, R.K., Macromolecules, 34, 91899192 (2001)Google Scholar
6. Choudalakis, G., Gotsis, A.D., European Polymer Journal, 45, 967984 (2009)Google Scholar
7. Yeh, J.M., Huang, H.Y., Chen, C.L., Su, W.F., Yu, Y.H., Surface and Coatings Technology, 200, 27532763 (2006)Google Scholar
8. Jacquelot, E., Espuche, E., Gerard, J.F., Duchet, J., Mazabraud, P., J. Polym. Sci. Part B: Polym. Phys., 44, 431440 (2006)Google Scholar
9. Frounchi, M., Dadbin, S., Salehpour, Z., Noferesti, M., J. Membr. Sci. 282, 142148 (2006)Google Scholar
10. Takashi, S., Goldberg, H.A., Feeney, C.A., Karim, D.P., Farrel, M., OLeary, K., Paul, D.R., Polymer, 47, 30833093 (2006)Google Scholar
11. Paranhos, C.M., Soares, B.G., Machado, J.C., Windmoller, D., Pessan, L.A., European Polymer Journal, 43, 48824890 (2007)Google Scholar
12. Yu, D.H., Wang, B., Feng, Y., Fang, Z.P., Journal of Applied Polymer Science, 102, 15091515 (2006)Google Scholar
13. Winberg, P., Eldrup, M., Pedersen, N., Van Es, M., Maurer, F., Polymer, 46, 82398249 (2005)Google Scholar
14. Kim, J.H., Young, Y.M., J. Membr. Sci. 193, 209225 (2001).Google Scholar
15. Kong, Y., Du, H.D., Yang, J., Shi, D., Wang, Y., Zhang, Y., Xin, W., Desalination, 146, 4955 (2002)Google Scholar
16. Choudalakis, G.A., Gotsis, A.D., Schut, H., Picken, S.J., European Polymer Journal, corrected proof (2011) doi: 10.1016/j.europolymj. 2010.12.008Google Scholar