Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T09:37:53.459Z Has data issue: false hasContentIssue false

The Phase Boundary Between β-Si3N4 and γ-Si3N4 at Elevated Temperatures and Pressures

Published online by Cambridge University Press:  01 February 2011

Atsuchi Togo
Affiliation:
atsushi.togo@ac.rwth-aachen.de, RWTH Aachen, Inorganic Chemistry, Aachen, 52056, Germany
Peter Kroll
Affiliation:
pkroll@uta.edu, University of Texas at Arlington, Chemistry and Biochemsitry, 700 Planetarium Pl, Arlington, TX, 76019, United States
Get access

Abstract

The phase boundary between β-Si3N4 and γ-Si3N4 is investigated at high-pressure and high-temperature using first-principles lattice dynamics calculations within the quasi-harmonic approximation. We find a positive slope of the phase boundary. It turns out that the thermal expansion of the spinel-type γ-phase is larger than that of the phenacite-type β-phase. On the other side, pressure affects more the volume of β-Si3N4 than of γ-Si3N4, reflected in the higher bulk modulus of γ-Si3N4. The origin of the different temperature behavior of these phases, consequently, goes along with a larger volume dependence of the zero point energy in γ-Si3N4 in comparison to β-Si3N4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] , Zerr, Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R., Fuess, H., Kroll, P., Boehler, R., Nature 1999, 400, 340 Google Scholar
[2] Schwarz, M., Miehe, G., Zerr, A., Kroke, E., Poe, B. T., Fuess, H., and Riedel, R., Adv. Mater. 2000, 12, 883.Google Scholar
[3] Kresse, G., J. Non-Cryst. Solids 193, 222 (1995).10.1016/0022-3093(95)00355-XGoogle Scholar
[4] Kresse, G. and Furthmuÿller, J., Comput. Mater. Sci. 6, 15 (1996).10.1016/0927-0256(96)00008-0Google Scholar
[5] Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).10.1103/PhysRevB.59.1758Google Scholar
[6] Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
[7] Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Google Scholar
[8] Togo, A., http://fropho.sourceforge.net/Google Scholar
[9] Oganov, A. R., Gillan, M. J., and Price, G. D., Phys. Rev. B 71, 64104 (2005).10.1103/PhysRevB.71.064104Google Scholar
[10] Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 244 (1944).Google Scholar
[11] Monkhorst, H. and Pack, J., Phys. Rev. B 13, 5188 (1976).Google Scholar