Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T05:26:08.833Z Has data issue: false hasContentIssue false

Phase Formation and Dielectric Properties of Ln3NbO7 (Ln = Rare Earth Elements)

Published online by Cambridge University Press:  26 February 2011

Lu Cai
Affiliation:
lclisa@ufl.edu, University of Florida, Materials Science and Engineering, 172 Rhines Hall, MSE Dept. 116400, Gainesville, FL, 32611-6400, United States
Julián Guzmán
Affiliation:
colbon88@ufl.edu, University of Florida, Materials Science and Engineering, 172 Rhines Hall, MSE Dept. 116400, Gainesville, FL, 32611-6400, United States
Louis A. Pérez
Affiliation:
lourocks@ufl.edu, University of Florida, Materials Science and Engineering, 172 Rhines Hall, MSE Dept. 116400, Gainesville, FL, 32611-6400, United States
Juan C. Nino
Affiliation:
jnino@mse.ufl.edu, University of Florida, Materials Science and Engineering, 172 Rhines Hall, MSE Dept. 116400, Gainesville, FL, 32611-6400, United States
Get access

Abstract

The structure and dielectric properties of rare earth niobate compounds within the Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y) and Ln2(Ln',Nb)O7 (Ln = Nd, Sm and Ln' = Yb) series are investigated. The crystal structure of the all the studied materials is found to be fluorite-related including webertite-type, pyrochlore, and defect fluorite structures. It is observed that the relative permittivity of the defect fluorite Ln3NbO7 (Ln = Dy, Er, Yb and Y) increases with the increase in temperature and exhibits low dielectric loss up to approximately 350 K. Above 350 K, the dielectric loss increases rapidly with increasing temperature as the onset of electrical conductivity takes place. Of particular interests are Gd3NbO7 and Nd3NbO7, which exhibit a frequency and temperature dependent dielectric relaxation behavior. At 1 MHz Gd3NbO7 reaches its maximum relative permittivity of ∼34 at about 330K, while at the same frequency, the maximum relative permittivity of Nd3NbO7 is attained at about 500 K. By contrast, Nd2(Yb,Nb)O7 and Sm2(Yb,Nb)O7, which crystallize in a pyrochlore-type structure, do not show dielectric relaxation and, comparatively, exhibit a more temperature-stable dielectric permittivity response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Subramanian, M. A.; Aravamudan, G.; Rao, G. V. S., Progress in Solid State Chemistry, 15 (2), 55 (1983).Google Scholar
2. Isupov, V. A., Ferroelectrics Review, 2, 115 (2000).Google Scholar
3. Yakubovich, O.; Urusov, V.; Massa, W.; Frenzen, G.; Babel, D., Zeitschrift Fur Anorganische Und Allgemeine Chemie, 619 (11), 1909 (1993).Google Scholar
4. Rossell, H. J., Journal of Solid State Chemistry, 27 (1), 115 (1979).Google Scholar
5. Jaiswal, A.; Wachsman, E. D., Journal of the Electrochemical Society, 152 (4), A787 (2005).Google Scholar
6. Reading, J.; Knee, C. S.; Weller, M. T., Journal of Materials Chemistry, 12 (8), 2376 (2002).Google Scholar
7. Ren, W.; Trolier-McKinstry, S.; Randall, C. A.; Shrout, T. R., J Appl Phys, 89 (1), 767 (2001).Google Scholar
8. Rooksby, H. P.; White, E. A. D., J Am Ceram Soc, 47 (2), 94 (1964).Google Scholar
9. Allpress, J. G.; Rossell, H. J., J Solid State Chem, 27 (1), 105 (1979).Google Scholar
10. Kovyazina, S. A.; Perelyaeva, L. A.; Leonidov, I. A.; Bakhteeva, Y. A., J Struct Chem+, 44 (6), 975 (2003).Google Scholar
11. Thakre, O. B.; Patil, P. V.; Chinchol.Vs, Curr Sci India, 40 (3), 62 (1971).Google Scholar
12. Vente, J. F.; Helmholdt, R. B.; Ijdo, D. J. W., J Solid State Chem, 108 (1), 18 (1994).Google Scholar
13. Sirotinkin, V. P.; Evdokimov;, A. A. Trunov, V. K., Zh Neorg Khim+;, 27 (7), 1648 (1982).Google Scholar
14. Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H., J Phys Chem B, 110 (5), 2219 (2006).Google Scholar
15. Abe, R.; Higashi, M.; Zou, Z. G.; Sayama, K.; Abe, Y.; Arakawa, H., J Phys Chem B, 108 (3), 811 (2004).Google Scholar
16. Shannon, R. D., Acta Crystallogr A, 32 (Sep1), 751 (1976).Google Scholar
17. Shannon, R. D., J Appl Phys, 73 (1), 348 (1993).Google Scholar
18. Astafyev, A. V.; Sirotinkin, V. P.; Stefanovich, S. Y., Kristallografiya, 30 (3), 603 (1985).Google Scholar
19. Yokogawa, Y.; Yoshimura;, M. Somiya, S., Solid State Ionics, 35 (3–4), 275 (1989).Google Scholar
20. Cai, L.; Nino, J. C., Journal of European Ceramic Society, accepted (special issue devoted to ELECTROCERAMICS X), (2006).Google Scholar
21. Wakeshima, M.; Nishimine, H.; Hinatsu, Y., J Phys-Condens Mat, 16 (23), 4103 (2004).Google Scholar
22. Nino, J. C.; Lanagan;, M. T. Randall, C. A., J Appl Phys, 89 (8), 4512 (2001).Google Scholar