Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T00:27:49.513Z Has data issue: false hasContentIssue false

Phase Transitions in the Picosecond Time Domain

Published online by Cambridge University Press:  26 February 2011

Hani E. Elsayed-Ali
Affiliation:
University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester NY 14623–1299, 716/275–5101
Gerard A. Mourou
Affiliation:
University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester NY 14623–1299, 716/275–5101
Get access

Abstract

The physical processes occurring during the initial stages of ultrafast laser heating of metals are described. Femtosecond laser irradiation is used to create nonequilibrium heating in metals. In such a nonequilibrium state, the electron temperature can be heated up to a few thousand degrees above the lattice temperature. Electron-lattice relaxation is time-resolved in copper and found to be 1 – 4 ps depending on the laser heating ffuence. The technique of time-resolved electron diffraction (a lattice structural and temperature probe) is described. Utilization of this technique for lattice temperature measurement of thin metal films is demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anisimov, S.I., Kapeliovich, B.L., and Perel'man, T.L., Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1975)].Google Scholar
2. Fujimoto, J.G., Liu, J.M., Ippen, E.P., and Bloembergen, N., Phys. Rev. Lett., 53, 1837 (1984).CrossRefGoogle Scholar
3. Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A., and Mourou, G.A., Ultrafast Phenomena V. edited by Fleming, G.R. and Siegman, A.E. (Springer-Verlag, Heidelberg, 1986).Google Scholar
4. Schoenlein, R.W., Liu, W.Z., Fujimoto, F.G., and Eesley, G.L., Ultrafast Phenomena Vi. edited by Fleming, G.R. and Siegman, A.E. (Springer-Verlag, Heidelberg, 1986).Google Scholar
5. Williamson, S., Mourou, G., and Li, J.C.M., Phys. Rev. Lett. 52, 2364 (1984).Google Scholar
6. Von der Linde, D., Fabriciu, N., Danielzik, B., and Hermes, P., Ultrafast Phenomena Vi. edited by Fleming, G.R. and Siegman, A.E. (Springer-Verlag, Heidelberg, 1986).Google Scholar
7. Eesley, G.L., Phys. Rev. Lett. 51, 2140 (1983).Google Scholar
8. Eesley, G.L., Phys. Rev. B33, 2144 (1986).CrossRefGoogle Scholar
9. Duling, I.N. III, Norris, T., Sizer, T. II, Bado, P., and Mourou, G.A., J. Opt. Soc. Am. B2, 616 (1985).Google Scholar
10. Rhodin, T.N. Jr, J. Amer. Chem. Soc. 72, 5102 (1950).Google Scholar
11. Rosei, R. and Lynch, D.W., Phys. Rev. B5, 3883 (1972).Google Scholar
12. Cardona, M., Modulation Spectroscopy, Solid State Physics, Suppl. 11, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York, 1969).Google Scholar
13. Mourou, G. and Williamson, S., Appl. Phys. Lett. 41, 44 (1982).Google Scholar