Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:17:04.083Z Has data issue: false hasContentIssue false

Phosphorescent White OLEDs for Solid-state Lighting

Published online by Cambridge University Press:  31 January 2011

Sean Xia
Affiliation:
sxia@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Peter Levermore
Affiliation:
plevermore@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Vadim Adamovich
Affiliation:
vadamovich@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Chun Lin
Affiliation:
clin@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Raymond C. Kwong
Affiliation:
rkwong@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Michael S. Weaver
Affiliation:
mweaver@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Julie J. Brown
Affiliation:
jjbrown@universaldisplay.com, Universal Display Corporation, Ewing, New Jersey, United States
Get access

Abstract

White OLEDs (WOLEDTMs) fabricated using energy efficient phosphorescent OLED (PHOLEDTM) technology open up exciting new ways to develop efficient white lighting. WOLEDs have the potential to transform the lighting industry. In this presentation, phosphorescent WOLEDs with high conductivity transport layers will be discussed. White light can be generated by partial energy transfer from blue to green and red. Single WOLED stacks are demonstrated that match the Energy Star® lighting color criteria for 2700K and 3000K with high efficiency (˜80 lm/W) and high color rendering indices (˜80). Both devices had operational lifetimes (LT70%) over 30,000 hours measured from an initial luminance of 1,000 cd/m2. Different techniques to improve optical outcoupling will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kido, J., Kimura, M., Nagai, K., Science 267, 1332, (1995).Google Scholar
2 Sun, Y., Giebink, N., Kanno, H., Ma, B., Thompson, M. E., Forrest, S. R., Nature 440, 908, (2006).Google Scholar
3 Sun, Y., Forrest, S. R., Appl. Phys. Lett. 91, 263503, (2007).Google Scholar
4 D'Andrade, B., Esler, J., Lin, C., Adamovich, V., Xia, S., Weaver, M. S., Kwong, R. C., Brown, J. J., Proc. SPIE 7051, 70510Q, (2008).Google Scholar
5 Baldo, M., O'Brien, D., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S. R., Nature 395, 151, (1998).Google Scholar
6 Kido, J., Hongawa, K., Okuyama, K., Nagai, K., Appl. Phys. Lett. 64, 815, (1994).Google Scholar
7 Kishigami, Y., Tsubaki, K., Kondo, Y., Kido, J., IDW'; 01, 659, (2001).Google Scholar
8 Brinstock, J., He, G., Murano, S., Werner, A., Zeika, O., SID 08 DIGEST, 822, (2008).Google Scholar
9 Tyan, Y., Rao, Y., Ren, X., Kesel, R., Cushman, T. R., SID 09 DIGEST, 895, (2009).Google Scholar
10http://www.energystar.gov/index.cfm?c=new_specs.ssl_luminaires.Google Scholar
11http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/caliper_round-9_summary.pdfGoogle Scholar
12 D'Andrade, B., Brown, J. J., Appl. Phys. Lett. 88, 192908, (2006).Google Scholar
13 Möller, S., Forrest, S. R., J. Appl. Phys. 91, 3324, (2002).Google Scholar
14 Nakamura, T., Fukumoto, N., Sinapi, F., Wada, N., Aoki, Y., Maeda, K., SID 09 DIGEST, 603, (2009).Google Scholar
15 Nakamura, T., Tsutsumi, N., Juni, N., Fujii, H., Appl. Phys. Lett. 97, 054505 (2005).Google Scholar
16 Sun, Y., Forrest, S. R., Nature Photonics 2, 483, (2008).Google Scholar