Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:13:13.724Z Has data issue: false hasContentIssue false

Phosphorus Diffusion in Polycrystalline Silicon: Monte Carlo Simulation of Experimental Diffusion Profiles

Published online by Cambridge University Press:  22 February 2011

J. P. Lavine
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
S.-T. Lee
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
D. L. Black
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
D. L. Losee
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
C. M. Jarman
Affiliation:
Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
Get access

Abstract

Phosphorus ions were implanted into silicon layers deposited by low pressure chemical vapor deposition onto thermally oxidized silicon substrates. Thermal anneals diffused the phosphorus and the resulting depth profiles were determined by secondary-ion mass spectrometry (SIMS). Transmission electron microscopy shows that the polysilicon layers have a multi-layer pattern of grains. The phosphorus profiles are fit by a Monte Carlo simulation technique that includes both grain and grain-boundary diffusion. The grain-boundary diffusion coefficient is found to be thermally activated with an activation energy of 3.3 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sunami, H., J. Electrochem. Soc. 125, 892 (1978).CrossRefGoogle Scholar
2. Gdtzlich, J. and Ryssel, H., J. Electrochem. Soc. 128, 617 (1981).CrossRefGoogle Scholar
3. Patton, G.L., Bravman, J.C., and Plummer, J. D., IEEE Trans. Electron Dev. ED-33, 1754 (1986).CrossRefGoogle Scholar
4. Mataré, H. F., J. Appl. Phys. 56, 2605 (1984).Google Scholar
5. Grovenor, C. R. M., J. Phys. C 18, 4079 (1985).CrossRefGoogle Scholar
6. Lubberts, G., Burkey, B. C., Moser, F., and Trabka, E. A., J. Appl. Phys. 52, 6870 (1981).Google Scholar
7. Losee, D. L., Lavine, J. P., Trabka, E. A., Lee, S.-T., and Jarman, C. M., J. Appl. Phys. 55, 1218 (1984).Google Scholar
8. Black, D. L., Lavine, J. P., Lee, S.-T., and Losee, D.L., in Microscopy of Semiconducting Materials, edited by Cullis, A.G. and Holt, D.B. (Institute of Physics, Bristol, 1985), pp. 157162.Google Scholar
9. Oppolzer, H., Falckenberg, R., and Doering, E., in Microscopy of Semiconducting Materials, edited by Joy, D.C. (Institute of Physics, Bristol, 1981), pp. 283288.Google Scholar
10. Lavine, J. P., J. Appl. Phys. 59, 1986 (1986).Google Scholar
11. Brandt, W. W., J. Chem. Phys. 59, 5562 (1973).Google Scholar
12. Murch, G.E. and Rothman, S.J., Diffus. Defect Data 42, 17 (1985).Google Scholar
13. Metsch, P., Spit, F. H. M., and Bakker, H., Phys. Status Solidi a 93, 543 (1986).Google Scholar
14. Benoist, P. and Martin, G., Thin Solid Films 25, 181 (1975).CrossRefGoogle Scholar
15. Gibbons, J.F., Johnson, W.S., and Mylroie, S.W., in Projected Range Statistics in Semiconductors and Related Materials, 2nd ed. (Dowden, , Hutchinson, , and Ross, , Stroudsburg, PA, 1975).Google Scholar
16. Kamins, T. I., Manoliu, J., and Tucker, R. N., J. AppI. Phys. 43, 83 (1972).Google Scholar
17. Baumgart, H., Leamy, H.J., Trimble, L.E., Doherty, C.J., and Celler, G. K., in Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (Elsevier Science Publishing, New York, 1982), pp. 311316.Google Scholar
18. Hezel, R., Siemens Forsch. Entwicklungsber. 3, 160 (1974).Google Scholar
19. Spit, F. H. M. and Bakker, H., Phys. Status Solidi a 97, 135 (1986).Google Scholar
20. Liotard, J. L., Bibérian, R., and Cabané, J., J. Physique 43(Cl), 213 (1982).Google Scholar