Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:26:24.841Z Has data issue: false hasContentIssue false

Photoelectron Spectroscopy Characterization and Computational Modeling of Gadolinium Nitride Thin Films Synthesized by Chemical Vapor Deposition

Published online by Cambridge University Press:  27 February 2015

Zane C. Gernhart
Affiliation:
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, U.S.A.
Juan A. Colón Santana
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115, U.S.A.
Lu Wang
Affiliation:
Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, U.S.A.
Wai-Ning Mei
Affiliation:
Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, U.S.A.
Chin Li Cheung
Affiliation:
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, U.S.A.
Get access

Abstract

Here we report our study of the electronic properties of [100]-textured gadolinium nitride (GdN) thin films synthesized using a chemical vapor deposition (CVD) method. The electronic properties of the films were investigated using photoemission and inverse photoemission spectroscopy coupled with computational modeling. Our density functional theory (DFT) calculations suggest that the theoretically predicted half-metallic electronic structure of GdN is likely due to its low density of states (DOS) at the Fermi level. These calculations are supported by our photoemission and inverse photoemission spectroscopic measurements which show a band gap for the prepared films of a few milli-electron volts, seemingly consistent with the predicted electronic structure. Additionally, the use of a CVD gallium nitride capping layer was found to decelerate the surface oxidation of our GdN samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M., Science 294, 14881495 (2001).CrossRefGoogle Scholar
Zutic, I., Fabian, J. and Das Sarma, S., Rev. Mod. Phys. 76, 323410 (2004).CrossRefGoogle Scholar
Jiang, X., Wang, R., van Dijken, S., Shelby, R., Macfarlane, R., Solomon, G. S., Harris, J. and Parkin, S. S. P., Phys. Rev. Lett. 90, 256603 (2003).CrossRefGoogle Scholar
Wang, D., Park, S., Lee, Y., Eom, T., Lee, S., Lee, Y., Choi, C., Li, J. and Liu, C., Cryst. Growth & Des. 9, 21242127 (2009).CrossRefGoogle Scholar
Gerlach, J. W., Mennig, J. and Rauschenbach, B., Appl. Phys. Lett. 90, 061919 (2007).CrossRefGoogle Scholar
Lambrecht, W. R. L., Phys. Rev. B 62, 1353813545 (2000).CrossRefGoogle Scholar
Larson, P. and Lambrecht, W. R. L., Phys. Rev. B 74, 085108 (2006).CrossRefGoogle Scholar
Leuenberger, F., Parge, A., Felsch, W., Baudelet, F., Giorgetti, C., Dartyge, E. and Wilhelm, F., Phys. Rev. B 73, 214430 (2006).CrossRefGoogle Scholar
Granville, S., Ruck, B. J., Budde, F., Koo, A., Pringle, D. J., Kuchler, F., Preston, A. R. H., Housden, D. H., Lund, N., Bittar, A., Williams, G. V. M. and Trodahl, H. J., Phys. Rev. B 73, 235335 (2006).CrossRefGoogle Scholar
Duan, C. G., Sabiryanov, R. F., Liu, J. J., Mei, W. N., Dowben, P. A. and Hardy, J. R., Phys. Rev. Lett. 94, 237201 (2005).CrossRefGoogle Scholar
Duan, C. G., Sabirianov, R. F., Mei, W. N., Dowben, P. A., Jaswal, S. S. and Tsymbal, E. Y., J. Phys. Cond. Matter. 19, 315220 (2007).CrossRefGoogle Scholar
Leuenberger, F., Parge, A., Felsch, W., Fauth, K. and Hessler, M., Phys. Rev. B 72, 014427 (2005).CrossRefGoogle Scholar
Aerts, C. M., Strange, P., Horne, M., Temmerman, W. M., Szotek, Z. and Svane, A., Phys. Rev. B 69, 045115 (2004).CrossRefGoogle Scholar
Yoshitomi, H., Kitayama, S., Kita, T., Wada, O., Fujisawa, M., Ohta, H. and Sakurai, T., Phys. Rev. B: Condens. Matter Mater. Phys. 83, 155202 (2011).CrossRefGoogle Scholar
Li, D. X., Sumiyama, K., Suzuki, K. and Suzuki, T., Phys. Rev. B 55, 64676472 (1997).CrossRefGoogle Scholar
Ludbrook, B. M., Farrell, I. L., Kuebel, M., Ruck, B. J., Preston, A. R. H., Trodahl, H. J., Ranno, L., Reeves, R. J. and Durbin, S. M., J. Appl. Phys. 106, 063910063914 (2009).CrossRefGoogle Scholar
Milanov, A. P., Thiede, T. B., Devi, A. and Fischer, R. A., J. Am. Chem. Soc. 131, 1706217063 (2009).CrossRefGoogle Scholar
Fang, Z., Williams, P. A., Odedra, R., Jeon, H. and Potter, R. J., J. Cryst. Growth 338, 111117 (2012).CrossRefGoogle Scholar
Duan, C. G., Sabiryanov, R. F., Mei, W. N., Dowben, P. A., Jaswal, S. S. and Tsymbal, E. Y., Appl. Phys. Lett. 88, 182505 (2006).CrossRefGoogle Scholar
Xiao, J. Q. and Chien, C. L., Phys. Rev. Lett. 76, 1727 (1996).CrossRefGoogle Scholar
Brewer, J. R., Gernhart, Z., Liu, H.-Y. and Cheung, C. L., Chem. Vap. Deposition 16, 216219 (2010).CrossRefGoogle Scholar
Woodruff, D. P., Johnson, P. D. and Smith, N. V., J. Vac. Sci. Technol. A 1, 11041110 (1983).CrossRefGoogle Scholar
Johnson, P. D. and Hulbert, S. L., Rev. Sci. Instrum. 61, 22772288 (1990).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 1116911186 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Comp. Mater. Sci. 6, 1550 (1996).CrossRefGoogle Scholar
Blochl, P. E., Phys. Rev. B 50, 1795317979 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 38653868 (1996).CrossRefGoogle Scholar
Pack, J. D. and Monkhorst, H. J., Phys. Rev. B 16, 17481749 (1977).CrossRefGoogle Scholar