Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:42:15.315Z Has data issue: false hasContentIssue false

Photoemission Studies of the Ag/InP(110) Interface: Interfacial Reactions and Schottky Barrier Formation

Published online by Cambridge University Press:  22 February 2011

W. G. Petro
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
T. Kendelewicz
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
I. A. Babalola
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
I. Lindau
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
W. E. Spicer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
Get access

Abstract

Room-temperature interfacial reactions at the Ag/InP (110) interface have been studied using soft x-ray photoemission spectroscopy of the In 4d and P 2p core levels. For low Ag coverages (less than 1 monolayer (ML)) no measurable change in core level shapes is observed, and the shift in core level position is due solely to band bending. At high Ag coverages (up to 72 ML) we observe dissociated In metal, P atoms near the surface, and Ag clustering. Fermi level movement is deduced from these spectra using a deconvolution technique, and pinning positions of 0.40 ± 0.05 eV below the conduction-band minimum for n-type and 0.5 ± 0.l eV above the valence-band maximum for p-type are found. These positions are in close agreement with calculations of native defect levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chye, P., Lindau, I., Pianetta, P., Garner, C. M., Su, C. Y., and Spicer, W. E., Phys. Rev. B 18, 5545 (1978).Google Scholar
2. Lindau, I., Chye, P. W., Garner, C. M., Pianetta, P., Su, C. Y., and Spicer, W. E., J. Vac. Sci. Technol. 15, 1332 (1978).Google Scholar
3. Brillson, L. J., Surf. Sci. Rep. 13, 123 (1982).Google Scholar
4. Williams, R. H., Varma, R. R. and McKinley, A., J. Phys. C 10, 4545 (1977);Google Scholar
Williams, R. H., Montgomery, V. and Varma, R. R., J. Phys. C 11, L735 (1978).Google Scholar
5. Brillson, L. J., Brucker, C. F., Katnani, A. U., Stoffel, N. G., and Margaritondo, G., J. Vac. Sci. Technol. 19, 661 (1981) andGoogle Scholar
21, 564 (1982).Google Scholar
6. Piotrowska, A., Auvray, P., Guivarc'h, A., Pelous, G., and Henoc, P., J. Appl. Phys. 52, 5112 (1981).Google Scholar
7. Williams, R. H., McKinley, A., Hughes, G. J., Montgomery, V. and McGovern, I. T., J. Vac. Sci. Technol. 16, 1418 (1979) andGoogle Scholar
21, 594 (1982).Google Scholar
8. Babalola, I. A., Petro, W. G., Kendelewicz, T., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A 1, 762 (1983).Google Scholar
9. Daw, M. S., Smith, D. L., Swarts, C. A., and McGill, T. C., J. Vac. Sci. Technol. 19, 506 (1981).Google Scholar
10. Dow, J. D. and Allen, R. E., J. Vac. Sci. Technol. 20, 659 (1982).Google Scholar
11. Pianetta, P., Lindau, I., Garner, C. M., and Spicer, W. E., Phys. Rev. B 18, 2792 (1978).Google Scholar
12. Lindau, I. and Spicer, W. E., J. Electron Spectrosc. Rel. Phenom. 3, 409 (1974);Google Scholar
Lindau, I., Pianetta, P., Yu, K. Y., and Spicer, W. E., J. Electron Spectrosc. Rel. Phenom. 8, 487 (1976).Google Scholar
13. Babalola, I. A., Petro, W. G., Kendelewicz, T., Lindau, I. and Spicer, W. E., to be published.Google Scholar
14. Pianetta, P., Lindau, I., Gregory, P. E., Garner, C. M. and Spicer, W. E., Surf. Sci. 72, 298 (1978).Google Scholar
15. Kendelewicz, T., Petro, W. G., Babalola, I. A., Silberman, J. A., Lindau, I., and Spicer, W. E., Phys. Rev. B 27, 3366 (1983).Google Scholar
16. Kendelewicz, T., Rossi, G., Petro, W. G., Babalola, I. A., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. B 1, 564 (1983).Google Scholar
17. Ludeke, R., Chiang, T.-C., and Miller, T., J. Vac. Sci. Technol. B 1, 581 (1983).Google Scholar
18. Spicer, W. E., Lindau, I., Skeath, P., and Su, C. Y., J. Vac. Sci. Technol. 17, 1019 (1980).Google Scholar
19. Petro, W. G., Kendelewicz, T., Babalola, I. A., Lindau, I., and Spicer, W. E., to be published.Google Scholar