Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:02:35.674Z Has data issue: false hasContentIssue false

Photoluminescence In Strain Compensated Siisigec Multiple Quantum Wells

Published online by Cambridge University Press:  10 February 2011

R. Hartmann
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
U. Gennser
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
D. Grützmacher
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
H. Sigg
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
E. Müller
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
K. Ensslin
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland
Get access

Abstract

The effect of strain compensation on the band gap and band alignment of Si/SiGeC MQWs is studied by photoluminescence (PL) spectroscopy. Evidence for type-I band alignment of strain reduced SiGeC MQWs is found. Values for the conduction and valence band offsets are given. A band gap reduction for exactly strain compensated SiGeC compared to compressive SiGeC is observed. This behavior is interpreted in terms of strain induced splitting and confinement shifts of the quantum well states. A good agreement between the model and the PL data is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and LeGoues, F. K., Appl. Phys. Lett. 60, 3033 (1992)Google Scholar
2. Brunner, K., Winter, W., Eberl, K., Jin-Philipp, N. Y., and Philipp, F., J. Cryst. Growth 175/176, 451 (1997)Google Scholar
3. Amour, A. St., Liu, C. W., Sturm, J. C., Lacroix, Y., and Thewalt, M. L. W., Appl. Phys. Lett. 67, 3915 (1995)Google Scholar
4. Schmidt, O. G. and Eberl, K., submitted to Phys. Rev. Lett.Google Scholar
5. Hartmann, R., Grützmacher, D., Müller, E., Gennser, U., Dommann, A., Schröter, P., and Warren, P., accepted for publication in Thin Solid FilmsGoogle Scholar
6. Hartmann, R., Grützmacher, D., Müller, E., Gennser, U., and Dommann, A., Thin Solid Films 294, 50 (1997)Google Scholar
7. Grützmacher, D., Hartmann, R., Schnappauf, P., Gennser, U., Müller, E., Bächle, D., and Dommann, A., accepted for publication in Thin Solid FilmsGoogle Scholar
8. Dutartre, D., Brémond, G., Souifi, A., and Benyattou, T., Phys. Rev. B 44, 11525 (1991)Google Scholar
9. Brunner, K., Eberl, K., and Winter, W., Phys. Rev. Lett. 76, 303 (1996)Google Scholar
10. Eberl, K., Brunner, K., and Winter, W., Thin Solid Films 294, 98 (1997)Google Scholar
11. Thewalt, M. L. W., Harrison, D. A., Reinhart, C. F., Wolk, J. A., and Lafontaine, H., Phys. Rev. Lett. 79, 269 (1997)Google Scholar
12. Hartmann, R., Gennser, U., Sigg, H., Grützmacher, D., and Ensslin, K., to be publishedGoogle Scholar