Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T08:48:16.186Z Has data issue: false hasContentIssue false

Plasma Synthesis of Highly Monodisperse Ge Nanocrystals and Self-Assembly of Dense Nanocrystal Layers

Published online by Cambridge University Press:  26 February 2011

Ryan Gresback
Affiliation:
ryang@me.umn.edu, University of Minnesota, Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States
Zak Holman
Affiliation:
holma069@umn.edu, University of Minnesota, Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States
Uwe Kortshagen
Affiliation:
uk@me.umn.edu, University of Minnesota, Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States
Get access

Abstract

Germanium nanocrystals have been synthesized using a low-pressure, nonthermal plasma approach. The nanocrystal size can be adjusted between 4-20 nm by varying the plasma parame-ters, and the size distribution is relatively narrow with standard deviations of 10-20% of the av-erage crystal size. Stable colloidal solutions of the germanium crystals have been prepared by grafting organic alkene ligands onto the nanocrystal surfaces. When drop-cast from solution onto TEM grids, the nanocrystals form densely packed films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nesher, G., Kronik, L., and Chelikowsky, J.R., Ab initio absorption spectra of Ge nanocrystals. 2005. Physical Review B: Condensed Matter and Materials Physics, 71(3): p. 035344/1–035344/5.10.1103/PhysRevB.71.035344Google Scholar
2. Wilcoxon, J.P., Provencio, P.P., and Samara, G.A., Synthesis and optical properties of colloidal germanium nanocrystals. 2001. Physical Review B, 64(3): p. 035417.10.1103/PhysRevB.64.035417Google Scholar
3. Gerion, D., Zaitseva, N., Saw, C., Casula, M.F., Fakra, S., Van Buuren, T., and Galli, G., Solution synthesis of germanium nanocrystals: Success and open challenges. 2004. Nano Letters, 4(4): p. 597602.10.1021/nl035231tGoogle Scholar
4. Gerung, H., Bunge, S.D., Boyle, T.J., Brinkerab, C.J., and Han, S.M., Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge[N(SiMe3)2]2. 2005. Chem. Commun., 2005(14): p. 1914–16.10.1039/b416066eGoogle Scholar
5. Lu, X., Korgel, B.A., and Johnston, K.P., High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution. 2005. Chem. Mater., 17(25): p. 64796485.10.1021/cm0515956Google Scholar
6. Lu, X., Ziegler, K.J., Ghezelbash, A., Johnston, K.P., and Korgel, B.A., Synthesis of Germanium Nanocrystals in High Temperature Supercritical Fluid Solvents. 2004. Nano Letters, 4(5): p. 969974.10.1021/nl049831jGoogle Scholar
7. Baldwin, R.K., Zou, J., Pettigrew, K.A., Yeagle, G.J., Britt, R.D., and Kauzlarich, S.M., The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles.2006. Chemical Communications (Cambridge, United Kingdom), (6): p. 658660.Google Scholar
8. Tanke, R.S., Kauzlarich, S.M., Patten, T.E., Pettigrew, K.A., Murphy, D.L., Thompson, M.E., and Lee, H.W.H., Synthesis of germanium nanoclusters with irreversibly attached functional groups: Acetals, alcohols, esters, and polymers. 2003. Chemistry of Materials, 15(8): p. 16821689.10.1021/cm021778hGoogle Scholar
9. Choi, W.K., Chew, H.G., Ho, V., Ng, V., Chim, W.K., Ho, Y.W., and Ng, S.P., Formation of germanium nanocrystals in thick silicon oxide matrix on silicon substrate under rapid thermal annealing.2006. Journal of Crystal Growth, 288(1): p. 7983.10.1016/j.jcrysgro.2005.12.033Google Scholar
10. Kan, E.W.H., Choi, W.K., Chim, W.K., Fitzgerald, E.A., and Antoniadis, D.A., Origin of charge trapping in germanium nanocrystal embedded SiO[sub 2] system: Role of interfacial traps?, 2004. Journal of Applied Physics, 95(6): p. 31483152.10.1063/1.1645639Google Scholar
11. Volodin, V.A., Gorokhov, E.B., Efremov, M.D., Marin, D.V., and Orekhov, D.A., Photoluminescence of GeO2 Films Containing Germanium Nanocrystals., 2003. JETP Lett., 77(8): p. 411–14.10.1134/1.1587174Google Scholar
12. Bostedt, C., van Buuren, T., Willey, T.M., and Terminello, L.J., Controlling the electronic structure of nanocrystal assemblies by variation of the particle-particle interaction. 2004. Applied Physics Letters, 85(22): p. 53345336.10.1063/1.1828238Google Scholar
13. Mangolini, L., Thimsen, E., and Kortshagen, U., High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. 2005. Nano Letters, 5(4): p. 655659.10.1021/nl050066yGoogle Scholar
14. Jurbergs, D., Mangolini, L., Rogojina, E., and Kortshagen, U., Silicon nanocrystals with ensemble quantum yields exceeding 60%. 2006. Appl. Phys. Lett., 88: p. 233116.10.1063/1.2210788Google Scholar
15. Mangolini, L., Jurbergs, D., Rogojina, E., and Kortshagen, U., Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. 2006. J. Luminescence, 121: p. 327334.10.1016/j.jlumin.2006.08.068Google Scholar
16. Buriak, J.M., Organometallic Chemistry on Silicon and Germanium Surfaces. 2002. Chem. Rev., 102(5): p. 12711308.10.1021/cr000064sGoogle Scholar
17. Murray, C.B., Kagan, C.R., and Bawendi, M.G., Synthesis and characterization of monodisperse nanocrystals and close-packed assemblies. 2000. Annual Review of Materials Science, 30(1): p. 545610.10.1146/annurev.matsci.30.1.545Google Scholar
18. Talapin, D.V. and Murray, C.B., PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors. 2005. Science, 310(5745): p. 8689.10.1126/science.1116703Google Scholar
19. Zemel, J.N., Jensen, J.D., and Schoolar, R.B., Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe. 1965. Physical Review, 140(1A): p. A330-A342.10.1103/PhysRev.140.A330Google Scholar
20. Maeda, Y., Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism. 1995. Physical Review B, 51(3): p. 1658 LP - 1670.10.1103/PhysRevB.51.1658Google Scholar