Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T02:38:34.306Z Has data issue: false hasContentIssue false

Polarization Dependence and Relaxation of the Current in Polycrystalline Ferroelectric Pb(ZrTi)O3 Film

Published online by Cambridge University Press:  08 March 2011

L. A. Delimova
Affiliation:
Solid State Electronics Division, Ioffe Institute of the Russian Academy of Sciences, Polytekhnicheskaya 26, St.Petersburg, 194021, Russian Federation.
V. S. Yuferev
Affiliation:
Solid State Electronics Division, Ioffe Institute of the Russian Academy of Sciences, Polytekhnicheskaya 26, St.Petersburg, 194021, Russian Federation.
A. V. Ankudinov
Affiliation:
Solid State Physics Division, Ioffe Institute of the Russian Academy of Sciences, Polytekhnicheskaya 26, St.Petersburg, 194021, Russian Federation.
E. V. Gushchina
Affiliation:
Solid State Physics Division, Ioffe Institute of the Russian Academy of Sciences, Polytekhnicheskaya 26, St.Petersburg, 194021, Russian Federation.
I. V. Grekhov
Affiliation:
Solid State Electronics Division, Ioffe Institute of the Russian Academy of Sciences, Polytekhnicheskaya 26, St.Petersburg, 194021, Russian Federation.
Get access

Abstract

Using Scanning Spreading Resistance Microscopy and direct current-voltage measurements, a long-relaxation transport current in polycrystalline PZT films is shown to depend on the polarization direction and voltage rise rate, the latter is typical for a capacitive current. The clockwise current hysteresis is observed at any polarization of the film. We suppose that the long current relaxation is due to recharge of traps, which participate in screening of polarization charges on PZT grain boundaries. The polarization charges response to applied bias for a short time, whereas the traps response to variation of the polarization charges takes much longer time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohlstedt, H., Pertsev, N. A., Rodrigues Contreras, J., Waser, R., Phys. Rev. B, 72, 125341(2005).Google Scholar
2. Tsymbal, E. Y., Kohlstedt, H., Science, 313, 181, (2006).Google Scholar
3. Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H. W., Folkman, C. M., Zhuravlev, M. Ye., Felker, D., Rzchowski, M., Eom, C.-B., and Tsymbal, E. Y., Nano Letters, 9, 3539 (2009).Google Scholar
4. Maksymovich, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A. P., Kalinin, S., Science, 324, 1421 (2009).Google Scholar
5. Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N. D., Barthelemy, A. and Bibes, M., Nature, 460, 81 (2009).Google Scholar
6. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V., Cheong, S.-W., Science, 324, 63 (2009).Google Scholar
7. Watanabe, Yukio, Phys. Rev. B, 59, 11257 (1999-I).Google Scholar
8. Delimova, L. A., Yuferev, V. S., Grekhov, I. V., Petrov, A. A., Fedorov, K. A., Afanasjev, V. P., Physics of the Solid State, 51, 1217 (2009).Google Scholar
9. Zheng, F., Xu, J., Fang, L., Shen, M., and Wu, X., Appl. Phys. Lett., 93, 172101 (2008).Google Scholar
10. Delimova, L. A, Yuferev, V. S., J. Appl. Phys., 108, 084110 (2010).Google Scholar
11. Delimova, L. A., Grekhov, I. V., Mashovets, D. V., Titkov, I. E., Afanasjev, V. P., Afanasjev, P. V., Kramar, G. P., and Petrov, A. A., Ferroelectrics, 348, 25 (2007).Google Scholar
12. Fujisawa, H., Shimizu, M., Horiuchi, T., Shiosaki, T., and Matsushige, K., Appl. Phys. Lett., 71, 416 (1997).Google Scholar
13. Xu, J., Cao, D., Fang, L., Zheng, F., Shen, M. and Wu, X., J. Appl. Phys., 106, 113705 (2009).Google Scholar