Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:47:51.191Z Has data issue: false hasContentIssue false

Porous oxide thin layers using mesophase templating

Published online by Cambridge University Press:  01 February 2011

Michaela Klotz
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France.
Noureddine Idrissi-Kandri
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France.
André Ayral
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France.
Christian Guizard
Affiliation:
LMPM, UMR CNRS 5635, ENSCM, 8, rue de l'Ecole Normale, F34296 Montpellier cedex 5, France.
Get access

Abstract

Hexagonal mesoporous silica layers were first prepared by the sol-gel route from solutions containing silicon alkoxides as silica precursors and alkyltrimethylammonium bromides to form the templating liquid crystal mesophase. The synthesis conditions required to obtain well-ordered crack-free layers were investigated. Two main synthesis parameters were identified. The first one is the aging time of the sol before deposition which defines the size of the inorganic cluster before the thin layer deposition and the simultaneous phase formation. The second important synthesis parameter is the surfactant volume fraction in the medium after the departure of the volatile components. Well-ordered hexagonal layers were obtained for surfactant volume fractions in agreement with the water-surfactant binary diagram. These synthesis conditions were extended to cubic and lamellar phases and to other types of surfactants, gemini (cationic surfactants with two polar head groups) and non-ionic triblock copolymers. First results concerning the extension of this approach to the preparation of alumina thin layers are finally presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S., Nature,, 359, 710 (1992).Google Scholar
2. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L., J. Am. Chem. Soc.,, 114, 10834 (1992).Google Scholar
3. Ogawa, M., J. Am. Chem. Soc.,, 116, 7941 (1994).Google Scholar
4. Dabadie, T., Ayral, A., Guizard, C., Cot, L., Robert, J.C., Poncelet, O., Mat. Res. Soc. Symp. Proc.,, 346, 849 (1994).Google Scholar
5. Dabadie, T., Ayral, A., Guizard, C., Cot, L. and Lacan, P., J. Mater. Chem.,, 6, 1789 (1996).Google Scholar
6. Ogawa, M., Chem. Commun.,, 1149 (1996).Google Scholar
7. Bruinsma, P.J., Hess, N.J., Bontha, J.R., Liu, J. and Baskaran, S., Mat. Res. Soc. Symp. Proc.,, 443, 105 (1997).Google Scholar
8. Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B. Huang, M.H. and Zinks, J.I., Nature,, 389, 364 (1997).Google Scholar
9. Klotz, M., Ayral, A., Guizard, C. and Cot, L., J. Mat. Chem.,, 10, 66 (2000).Google Scholar
10. Klotz, M., Albouy, P.A., Ayral, A., Ménager, C., Grosso, D., van der Lee, A., Cabuil, V., Babonneau, F. and Guizard, C., accepted, to be published in Chemistry of Materials. Google Scholar
11. Tanev, P.T. and Pinnavaia, T.J., Science,, 267, 865 (1995).Google Scholar
12. Templin, M., Franck, A., Du Chesne, A., Leist, H., Zhang, Y., Ulrich, R., Schädler, V. and Wiesner, U., Science,, 278, 1795 (1997).Google Scholar
13. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F. and Stucky, G.D., Adv. Mater.,, 10, 1380 (1998).Google Scholar
14. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F. and Stucky, G.D., J. Am. Chem. Soc.,, 120, 6024 (1998).Google Scholar
15. Sayari, A. and Liu, P., Microporous Materials,, 12, 149 (1997).Google Scholar
16. Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. and Stucky, G.D., Chem. Mater.,, 11, 281, (1999).Google Scholar
17. Van de Voort, P., Morey, M., Stucky, G.D., Mathieu, M. and Vansant, E.F., J. Phys. Chem. B,, 102, 585 (1998).Google Scholar
18. Idrissi-Kandri, N., Ayral, A., Guizard, C., El Ghadraoui, E.H. and Cot, L., Materials Letters,, 40, 52 (1999).Google Scholar
19. Acosta, S., Ayral, A., Guizard, C. and Cot, L., J. of Sol-Gel Sci. and Technol., 8, 195 (1996).Google Scholar
20. Barret, E.P., Joyner, L.G. and Halenda, P.H., J. Am. Chem. Soc.,, 73, 373 (1951).Google Scholar
21. Ayral, A., El Mansouri, A., Vieira, M-P and Pilon, C., J. of Mater. Sci. Letters,, 17, 883 (1998).Google Scholar
22. Inoue, S., Hanzawa, Y. and Kaneko, K., Langmuir,, 1998, 14, 3079.Google Scholar
23. Wärnheim, T. and Jönsson, A., J. Colloidand Interface Science, 125, 627 (1988).Google Scholar
24. Ekwall, P., Adv. Liq. Cryst., 1, 1 (1975).Google Scholar
25. Fontell, K., Khan, A., Lindstrom, B., Maciejewska, D. and Puang-Ngern, S., Colloid Polym. Sci., 1991, 269 727.Google Scholar
26. Wärnheim, T., Jönsson, A. and Sjöberg, M., Progr. Colloid Polym. Sci., 82, 271 (1990).Google Scholar
27. Blackmore, E.S. and Tiddy, G.J.T., J. Chem. Soc., Faraday Trans. 2,, 84, 1115 (1988).Google Scholar
28. Balmbra, R.R., Clunie, J.S. and Goodman, J.F., Nature,, 22, 1159 (1969).Google Scholar
29. Romero, A.A., Alba, M.D., Zhou, W., and Klinowski, J., J. Phys. Chem. B,, 101, 5294 (1997).Google Scholar
30. Huo, Q., Margolese, D.I. and Stucky, G.D., Chem. Mater.,, 8, 1147 (1996).Google Scholar
31. Alami, E., Levy, H., Zana, R. and Skoulios, A., Langmuir,, 9, 940 (1993).Google Scholar
32. Chu, B. and Zhou, Z. in Nonionic Surfactants Polyoxoalkylene Block Copolymers, ed. Nace, V.M. (Marcel Dekker, N.Y., 1996) pp. 67143.Google Scholar
33. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and Stucky, G.D., Science,, 279, 548 (1998).Google Scholar
34. Bottero, J. Y., Cases, J.M., Flessinger, F. and Poirier, J.E, J. Phys. Chem., 84, 29 (1980).Google Scholar