Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:21:09.786Z Has data issue: false hasContentIssue false

Prediction of the Interface Response Functions for Amorphous and Crystalline Phases of Silicon and Germanium

Published online by Cambridge University Press:  01 February 2011

Erik J. Albenze
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Laura A. Matejik
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.
Nick F. Fynan
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Paulette Clancy
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Get access

Abstract

Interface response functions that govern the solidification kinetics of amorphous and crystalline phases of Si and Ge have been determined for reparameterized versions of the Stillinger-Weber (SW) potential. The strength of the three-body term in the SW potential and the energy scaling parameter were modified to obtain agreement with the experimental melting temperatures of both the amorphous and crystalline phases. These modified models were used to produce predictions of the interface response function for both Si and Ge that adequately fit the few known experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thompson, M. O., Galvin, G. J., Mayer, J.W., Peercy, P. S., Poate, J. M., Jacobson, D.C., Cullis, A. G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
2. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
3. Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing-1978 eds. Ferris, S.D., Leamy, H. J., and Poate, J. M. (American Institute of Physics Conf. Proc. No. 50, New York, 1979) p. 73; B.G. Bagley and H.S. Chen, ibid, p. 97.Google Scholar
4. Polk, P. A., Polman, A., and Sinke, W. C., Phys. Rev.B 47, 5 (1993).Google Scholar
5. Kluge, M. D. and Ray, J. R., Phys. Rev. B 39, 1738 (1989).Google Scholar
6. Yu, Q., Thompson, M. O., and Clancy, P., Phys. Rev. B 53, 8386 (1996).Google Scholar
7. Brambilla, L., Colombo, L., Rosato, V., and Cleri, F., Appl. Phys. Lett. 77, 2337 (2000).Google Scholar
8. Albenze, E. J. and Clancy, P., submitted to Phys. Rev. B, 2003.Google Scholar
9. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
10. Bazant, M. Z. and Kaxiras, E., Phys. Rev. Lett. 77, 4370 (1996).Google Scholar
11. Bazant, M. Z., Kaxiras, E., Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
12. Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and Yip, S., Phys. Rev. B 58, 2539 (1998).Google Scholar
13. Lenosky, T. J., Sadigh, B., Alonso, E., Bulatov, V. V., Rubia, T. Diaz de la, Kim, J., Voter, A. F., and Kress, J., Modeling Simul. Mater. Sci. Eng. 8, 825 (2000).Google Scholar
14. Yu, Q. and Clancy, P., J. Cryst. Growth 149, 45 (1995).Google Scholar
15. Yu, Q. and Clancy, P., ModelingSimul. Mater. Sci. Eng. 2, 829 (1994).Google Scholar
16. Uttormark, M. J., in Melting Kinetics of Small Crystalline Clusters in the Liquid by Molecular Dynamics, Ph.D. Thesis, Cornell University, 1992.Google Scholar