Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:04:04.239Z Has data issue: false hasContentIssue false

Preparation And Characterization Of Carbon Nitride Thin Films By Electron Cyclotron Resonance (Ecr) Sputtering Method

Published online by Cambridge University Press:  10 February 2011

Yoshifumi Aoi
Affiliation:
Department of Materials Chemistry and High-Tech Research Center, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan, aoi@rins.ryukoku.ac.jp
Youji Tani
Affiliation:
Department of Materials Chemistry and High-Tech Research Center, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan, aoi@rins.ryukoku.ac.jp
Masaaki Hisa
Affiliation:
Department of Materials Chemistry and High-Tech Research Center, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan, aoi@rins.ryukoku.ac.jp
Eiji Kamijo
Affiliation:
Department of Materials Chemistry and High-Tech Research Center, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan, aoi@rins.ryukoku.ac.jp
Get access

Abstract

Crystalline carbon nitride films were deposited by electron cyclotron resonance (ECR) plasma sputtering method using a carbon target and a nitrogen gas atmosphere. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and X-ray diffraction (XRD). Nitrogen content of the deposited film was varied with substrate selfbias potential and substrate temperature. Bonding states of nitrogen and carbon in the deposited filns were different according to the substrate temperature, sp3 C-N bonds were observed for the film deposited at 600 °C. Crystallization of carbon nitride thin film was observed hen the deposition was carried out an elevated substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
2. Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990).Google Scholar
3. Corkill, J. L. and Cohen, M. L., Phys. Rev. B 48, 17622 (1993).Google Scholar
4. Badding, J. V., Adv. Mater. 9, 877 (1997).Google Scholar
5. Kaufman, J. H., Mertin, S., and Saperstein, D. D., Phys. Rev. B 39, 13053 (1989).Google Scholar
6. Li, D., Cung, Y. W., Wong, M. S., and Sproul, W. D., J. Appl. Phys. 74,219 (1993).Google Scholar
7. Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
8. Yu, K. M., Cohen, M. L., Hailer, E. E., Hanson, W. L., Lu, A. Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).Google Scholar
9. Rossi, F., Andre, B., van Veen, A., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).Google Scholar
10. Ogata, K., Chubaci, J. F. D., and Fujimoto, F., J. Appl. Phys. 76, 3791 (1994).Google Scholar
11. Yen, T. and Chou, C., Appl. Phys. Lett. 67, 2081 (1995).Google Scholar
12. Wan, L. and Egerton, R. F., Thin Solid Films 279, 34 (1996).Google Scholar
13. Kaltofen, R., Sebald, T., and Weise, G., Thin Solid Films 290, 112 (1996).Google Scholar
14. He, X., Shu, L., Li, W., and Li, H., J. Mater. Res. 12, 1595 (1997).Google Scholar
15. Taki, Y., Kitagawa, T., and Takai, O., Thin Solid Films 304, 183 (1997).Google Scholar
16. Kamijo, E., Nakamura, T., and Tani, Y., Nucl. Instrum. Methods Phys. Res. B 121, 110 (1997).Google Scholar
17. Kohzaki, M., Matsumuro, A., Hayashi, T., Muramatsu, M., and Yamaguchi, K., Thin Solid Films 308–309, 239 (1997).Google Scholar
18. Taki, Y., Kitagawa, T., and Takai, O., Thin Solid Films 304, 183 (1997).Google Scholar
19. Wixom, M., J. Am. Chem. Soc. 73, 1973 (1990).Google Scholar
20. Chen, Y., Guo, L., and Wang, E., Philos. Mag. Lett. 75, 155 (1997).Google Scholar