Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:10:44.671Z Has data issue: false hasContentIssue false

Preparation of Quantum-Sized Semiconductor Sulfide-Doped Gels

Published online by Cambridge University Press:  15 February 2011

T. Gacoin
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
J.P. Boilot
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
F. Chaput
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
A. Lecomte
Affiliation:
E.N.S. Céramique Industrielle, 47 Av. A. Thomas, 87065 Limoges (FRANCE)
Get access

Abstract

Ultrasmall semiconductor particles (CdS, ZnS and PbS) are produced either by direct precipitation, γ-radiolysis or in mimetic membranes. A pure cluster powder is then prepared from a chemical capping reaction. The capping of the cluster surface by thiolate complexes permits the separation of aggregates without fusion. These capped clusters can be dispersed in different solvents such as sol-gel precursors allowing to prepare dense and optically transparent xerogels with semiconductor clusters grafted on oxide polymers. The nanocrystallites are characterized by X-ray diffraction, small-angle X-ray scattering and optical spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L.E., J. Chem.Phys., 80, 4403 (1984) and 90, 2555 (1986).Google Scholar
2. Rossetti, R., Hull, R., Gibson, J.M. and Brus, L.E., J. Chem.Phys., 82, 552 (1985).Google Scholar
3. M Steigerwald, L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglas, D.C. and Brus, L.E., J. Am. Chem. Soc., 110, 3047 (1988).Google Scholar
4. Hayes, D., Micic, O. I., Nenadovic, M.T., Swayambunathan, V. and Meisel, D., J. Phys. Chem., 93, 4605 (1989).Google Scholar
5. Gacoin, T., Chaput, F., Boilot, J.P., Mostafavi, M. and Delcourt, M.O., The Proceedings of the Second European Conference on Sol-Gel Technology, Eds Vilminot, S., Nass, R. and Schmidt, H., North Holland, under press (1992)Google Scholar
6. Swayambunathan, V., Hayes, D., Schmidt, K.H., Liao, Y.X. and Meisel, D., J. Am. Chem. Soc., 112, 3831 (1990).Google Scholar
7. Fendler, J.H., Chem. Rev., 87, 877 (1987).Google Scholar
8. Lianos, P. and Thomas, J.K., Chem. Phys. Letters, 125, 299 (1986).Google Scholar
9. Fischer, C.H. and Henglein, A., J. Phys. Chem., 93, 5578 (1989).Google Scholar
10. Wang, Y. and Herron, N., J. Phys. Chem., 95, 525 (1991).Google Scholar
11. Gallardo, S., Gutiérrez, M., Henglein, A. and Janata, E., Ber. Bunsenges. Phys. Chem., 93 1080 (1989).Google Scholar
12. Guinier, A., Théorie et TechniQue de la Radiocristallographie, Dunod, Paris(1956).Google Scholar
13. Nogami, M., Nagasaka, K. and Takata, M., J. of Non-Crystalline Solids, 122, 101 (1990).Google Scholar
14. Bagnall, C.M. and Zarzycki, J., in Sol-Gel Optics, Eds Mackenzie, J.D. and Ulrich, D.R., S.P.I.E. Proc. Ser. 1328, 108 (1990).Google Scholar
15. Schaefer, D.W., Science 243, 1023 (1989).Google Scholar
16. Chaput, F., Boilot, J.P., Devreux, F., Canva, M., Georges, P. and Brun, A., in Better Ceramics Through Chemistry V. edited by Hampden-Smith, M.J., Klemperer, W.G. and Brinker, C.J., Mater. Res. Soc. Proc., to be published.Google Scholar
17. Kuczynski, J. and Thomas, J.K., J. Phys. Chem., 89, 2720 (1985).Google Scholar