Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T06:04:40.348Z Has data issue: false hasContentIssue false

Probing the isothermal δ→α' martensitic transformation in Pu-Ga with in situ x-ray diffraction

Published online by Cambridge University Press:  01 February 2011

Jason R. Jeffries
Affiliation:
jeffries4@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, United States
Kerri J.M. Blobaum
Affiliation:
blobaum1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, United States
Adam J. Schwartz
Affiliation:
schwartz6@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, United States
Hyunchae Cynn
Affiliation:
cynn1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, United States
Wenge Yang
Affiliation:
wyang@hpcat.aps.anl.gov, HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
William J. Evans
Affiliation:
evans31@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, United States
Get access

Abstract

The time-temperature-transformation (TTT) curve for the δ → α′ isothermal martensitic transformation in a Pu-1.9 at. % Ga alloy exhibits an anomalous double-C curve. Recent work suggests that an ambient temperature conditioning treatment enables the lower-C curve. However, the mechanisms responsible for the double-C are still not fully understood. When the δ → α′ transformation is induced by pressure, an intermediate γ′ phase is observed in some alloys. It has been suggested that transformation at upper-C temperatures may proceed via this intermediate phase, while lower-C transformation progresses directly from δ to α′. To investigate the possibility of thermally induced transformation via the intermediate γ′ phase, in situ x-ray diffraction at the Advanced Photon Source was performed. Using transmission x-ray diffraction, the δ → α′ transformation was observed as a function of time and temperature in samples as thin as 30 μm. The intermediate γ′ phase was not observed at -120°C (upper-C curve) or -155 °C (lower-C curve). Results indicate that the bulk of the α′ phase forms relatively rapidly at -120 and -155 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Hecker, S. S. Harbur, D. R. and Zocco, T. G. Prog. Mater. Sci. 49, 429 (2004).Google Scholar
2) Orme, J. T. Faiers, M. E. and Ward, B. J. in Plutonium 1975 and Other Actinides, edited by Blank, H. and Lindner, R. (North Holland, Amsterdam, 1976), p 761.Google Scholar
3) Oudot, B. Blobaum, K. J. M. Wall, M. A. and Schwartz, A. J. J. Alloys Compd. 444445, 230 (2007).Google Scholar
4) Imai, Y. Izumiyama, M. and Sasaki, K. Sci. Rep. Res. Inst. Tohoku Univ. A18, 39 (1966).Google Scholar
5) Rechtien, J. J. and Nelson, R. D. Metall. Trans. A4, 2755 (1973).Google Scholar
6) Deloffre, P. Truffier, J. L. and Falanga, A. J. Alloys Compd. 271273, 370 (1998).Google Scholar
7) Blobaum, K. J. M. Krenn, C. R. Wall, M. A. Massalski, T. B. and Schwartz, A. J. Acta Mater. 54, 4001 (2006).10.1016/j.actamat.2006.04.033Google Scholar
8) Jeffries, J. R. K. Blobaum, J. M. Wall, M. A. and Schwartz, A. J. Acta Mater. 57, 1831 (2009).Google Scholar
9) Jeffries, J. R. Blobaum, K. J. M. Wall, M. A. and Schwartz, A. J. Phys. Rev. B80, 094107 (2009).Google Scholar
10) Lookman, T. Saxena, A. and Albers, R. C. Phys. Rev. Lett. 100, 145504 (2008).Google Scholar
11) Klosek, V. Griveau, J. C. Faure, P. Genestier, C. Baclet, N. anWastin, d. F. J. Phys.: Condens. Matter 20, 275217 (2008).Google Scholar
12) Schwartz, A. J. Cynn, H. K. Blobaum, J. M. Wall, M. A. Moore, K. T. Evans, W. J. Farber, D. L., Jeffries, J. R. and Massalski, T. B. Prog. Mater. Sci. 54, 909 (2009).Google Scholar
13) Jeffries, J. R. K. Blobaum, J. M. Wall, M. A. and Schwartz, A. J. J. Nucl. Mater. 384, 222 (2009).Google Scholar
14) Hammersley, A. Svensson, S. Hanfland, M. Fitch, A. and Hausermann, D. High Press. Res. 14, 235 (1996).10.1080/08957959608201408Google Scholar
15) Lawson, C. Martinez, B. Roberts, J. A. Bennett, B. I. and Richardson, J. W. Phil. Mag. B80, 53 (2000).Google Scholar
16) Baskes, M. I. Lawson, A. C. and Valone, S. M. Phys. Rev. B72, 014129 (2005).Google Scholar
17) Moore, K. T. Krenn, C. R. Wall, M. A. and Schwartz, A. J. Metall. Mater. Trans. A38A, 212 (2007).Google Scholar
18) Kolmogorov, A. N. Izv. Akad. Nauk. SSR 3, 355 (1937).Google Scholar
19) Avrami, M. J. Chem. Phys. 7, 1103 (1939).Google Scholar
20) Avrami, M. J. Chem. Phys. 8, 212 (1940).Google Scholar
21) Avrami, M. J. Chem. Phys. 9, 177 (1941).Google Scholar
22) Johnson, W. A. and Mehl, R. F. Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939).Google Scholar
23) C. Platteau, Ravat Texier, G. Oudot, B. and Delaunay, F. J. Nucl. Mater. 393, 418 (2009).Google Scholar