No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Dissolution of spent fuel has been studied in saline, anaerobe, carbonate free solutions. Processes controlling spent fuel dissolution and associated radionuclide release are radiolytically controlled oxidative dissolution, sorption on container, solubility and coprecipitation. Upper limits for oxidative dissolution rates are given by the production rates of oxidative radiolysis products. This limitation leads to a strong decrease in surface area normalized reaction rates with increasing surface to volume ratio (S/V) and imposes geometric constraints on prediction of spent fuel behavior in a repository. Solution concentrations of Am during spent fuel corrosion were about 5 orders of magnitude lower than the solubility of Am(OH)3(s) and are likely controlled by coprecipitation. Pu concentrations may be controlled by Pu(VI) or Pu(IV) (hydr)oxides.