Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:58:24.262Z Has data issue: false hasContentIssue false

Processing and Properties of Reaction Bonded Silicon Nitride Made from Laser Synthesized Silicon Powders

Published online by Cambridge University Press:  28 February 2011

J. S. Haggerty
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
G. Garvey
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J-M. Lihrmann
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J.E. Ritter
Affiliation:
University of Massachusetts, Amherst, MA 01003
Get access

Abstract

Laser synthesized silicon powders have been used to make reaction bonded silicon nitride samples. Maximum hardness (11.3 GNm−2), fracture toughness (3.6 MNm−3/2), pore size (Hg porosimetry 50–300Å radius) and strength (∼460 MNm−2) values reflect the superior microstructures that are observed. With anaerobic anhydrous processing, these powders nitride to completion in less than 7 hours at 1400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Torti, M.L., Alliegro, R.A., Richerson, D.W., Washburn, M.E. and Weaver, G.Q., Proc. Brit. Ceram. Soc. 22, 129 (1973).Google Scholar
[2] Porz, E. and Thummler, F., J. Mat. Sci., 19, 12831295 (1984)Google Scholar
[3] Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S. and Marra, R.A., J. Am. Ceram. Soc, 65 [7], 324330 (1982).CrossRefGoogle Scholar
[4] Cannon, W.R., Danforth, S.C., Haggerty, J.S. and Marra, R.A., J. Am. Ceram. Soc, 65 [7], 330335 (1982).Google Scholar
[5] Flint, J.H. and Haggerty, J.S., Applications of Lasers to Industrial Chemistry, SPIE, Vol. 458 (1984).Google Scholar
[6] Marra, R.A., PhD Thesis, MIT, 1982.Google Scholar
[7] Bernal, J.D. and Mason, J., Nature, 188, 908 (1960).CrossRefGoogle Scholar
[8] Perry, R.H. and Chilton, C.H., Chemical Engineers Handbook, McGraw Hill Co., NY (1973).Google Scholar
[9] Lambe, T.W. and Whitman, R.V., Soil Mechanics, J. Wiley & Sons, NY, 406422, (1969).Google Scholar
[10] Moulson, A.J., J. Mat. Sci. 14, 10171051 (1979).Google Scholar
[11] Mangels, J.A., J. Am. Ceram. Soc, 58 [7–8], 354, (1975).Google Scholar
[12] Mangels, J.A., Am. Ceram. Soc. Bull., 60 [6], 613617 (1981).Google Scholar
[13] Messier, D.R., Wong, P. and Ingram, A.E., J. Am. Ceram. Soc, 56 [3], 171 (1973).Google Scholar
[14] Messier, D.R. and Wong, P., J. Am. Ceram. Soc, 56 [9], 480 (1973).Google Scholar
[15] Messier, D.R. and Wong, P., Ceramics for High Performance Applications p. 181, (1974).Google Scholar
[16] Wong, P. and Messier, D.R., Am. Ceram. Soc. Bull., 57 [5], 525 (1978).Google Scholar
[17] Danforth, S.C. and Richman, M.H., Am. Ceram. Soc. Bull., 62 [4], 501 (1983).Google Scholar
[18] Danforth, S.C. and Haggerty, J.S., J. Am. Ceram. Soc. 64 [4], C-58 (1983).Google Scholar
[19] Shetty, D.K. et al., Am. Ceram. Soc. Bull., 59 [12], p. 11931197 (1980).Google Scholar
[20] Anstis, G.R. et al., J. Am. Ceram. Soc, 64 [9], 533538 (1981).CrossRefGoogle Scholar
[21] Larsen, D.C. and Adams, J.W., Technical Report AFWAL-TR-83-4141, April 1984.Google Scholar
[22] Lindberg, L.J., Richerson, D.W., Carruthers, N.D. and Gersch, H.M., Am. Ceram. Soc. Bull., 61[5], 574578 (1982).Google Scholar
[23] Riley, F.L., “Nitrogen Ceramics” (Nordhoff, Leyden), (1977) p. 265 CrossRefGoogle Scholar
[24] Godfrey, D.J. and Lindley, M.W., Proc. Brit. Ceram. Soc. 22, 229 (1973).Google Scholar
[25] Smith, F.W., Emery, A.F. and Kobayashi, A.S., J. Appl. Mech. 34, Series E, 453459 (1967).Google Scholar
[26] Anderson, C.A. and Bratton, R.J., The Science of Ceramic Machining and Surface Finishing II, NBS Special Publication 562 (1979), 463476.Google Scholar