Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:18:53.578Z Has data issue: false hasContentIssue false

Processing of Pure Ni Mocvd Films

Published online by Cambridge University Press:  10 February 2011

Laurent Brissonneau
Affiliation:
Laboratoire Matériaux et Interfaces INPT-CNRS, ENS Chimie de Toulouse 118 Route de Narbonne, 31077 Toulouse cedex 4, France, cvahlas@ensct.fr
Alex Reynes
Affiliation:
Laboratoire Matériaux et Interfaces INPT-CNRS, ENS Chimie de Toulouse 118 Route de Narbonne, 31077 Toulouse cedex 4, France, cvahlas@ensct.fr
Constantin Vahlas
Affiliation:
Laboratoire Matériaux et Interfaces INPT-CNRS, ENS Chimie de Toulouse 118 Route de Narbonne, 31077 Toulouse cedex 4, France, cvahlas@ensct.fr
Get access

Abstract

In this study are reported results on the processing of nickel thin films by metal-organic chemical vapor deposition starting from nickelocene, at atmospheric and reduced pressures, and at temperatures varying between 150 °C and 300 °C. Films present a Volmer-Weber type nodular morphology. Nodules are composed of small crystallites, the mean size of which is about 50 nm. Carbon (up to 10 at. % depending on processing conditions) is incorporated at interstitial rather than intergranular position in the films. High operating pressure favors carbonfree films. An analysis of the gas phase reaction by mass spectrometry is presented in order to understand the mechanisms of the carbon contamination of the deposits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Becht, M., Gallus, J., Hunziker, M., Atamny, F. and Dahmen, K.H., J. Phys. IV 5 465 (1995).Google Scholar
[2] Urrutigoïty, M., Cecutti, C., Senocq, F., Gorrichon, J.P. and Gleizes, A., Inorg. Chim. Acta 248 15 (1996).Google Scholar
[3] Borisov, V.O., Bakovets, V.V., Bakhturova, L.F. and Dolgovesova, I.P., Inorg. Materials 31 1026 (1995).Google Scholar
[4] Kaesz, H.D.W., Hicks, R.S., Chen, R.F., Xue, Y.A., Xu, Z., Shuh, D., Thridandam, D. K., H., Mat. Res. Soc. Proc, 131, Pittsburgh, PA, 1989 pp. 395400.10.1557/PROC-131-395Google Scholar
[5] Brekel, C.H.J.F. Van den, , R. M. M. ; Straten, Van der, , P. J. M. ; Verspui, G., Proc. 8'h Int. Conf. CVD 1981, Electrochem. Soc. PV 817, 142156 (1981).Google Scholar
[6] Van Hemert, R.L., Spendlove, L.B. and Sievers, R.E., J. El. Soc. 112 1123 (1965).Google Scholar
[7] Maruyama, T. and Tago, T., J. Mat. Sci. 28 5345 (1993).Google Scholar
[8] Maury, F., J. Phys. IV5 449 (1995).Google Scholar
[9] Stauf, G.T., Driscoll, C., Dowben, P.A., Barfuss, S. and Grade, M., Thin Solid Films 153 421 (1987).Google Scholar
[10] Kaplin, Y.A., Belysheva, G.V., Zhil'tsov, S.F., Domrachev, G.A., Chernyshova, L.S., Zh. Obshchei Khimii 50 118 (1980).Google Scholar
[11] Brissonneau, L., Reynes, A. and Vahlas, C., in Int. Symp. Chem. Vapor Deposition : CVDXIV and EUROCVD 11, edited by Allendorf, M., and Bernard, C. (The Electrochem. Soc. PV 97–25, Pennington, NJ, 1997), p. 15801587.Google Scholar
[12] Hierso, J.-C., Satto, C., Feurer, F. and Kalck, P., Chem. Mater. 8 2481 (1996).Google Scholar
[13] Dormans, G.J.M., J. Cryst. Growth 108 806 (1991).Google Scholar
[14] Brissonneau, L. and Vahlas, C., to be published.Google Scholar
[15] Venables, J.A. and Spiller, G.D.T., in Surface mobilities on solid materials. Fondamental concepts and applications, edited by Binh, Vu Thien, (NATO ASI series, 1983) pp. 341404.Google Scholar
[16] Hitchman, M.L. and Jensen, K.F., Chemical Vapor Deposition, Principles and Applications, (Academic Press, London, 1993), p. 677.Google Scholar
[17] Aouni, A., Pianelli, A. and Grosse, E. Bauer, Rev. Métallurgie, 1992 597.Google Scholar
[18] Zinn, A., Niemer, B. and Kaesz, H.D., Adv. Materials 4 375 (1992).Google Scholar