Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:00:51.468Z Has data issue: false hasContentIssue false

Properties of Cu in GaAs

Published online by Cambridge University Press:  26 February 2011

Rosa Leon
Affiliation:
Department of Materials Science, University of California, Berkeley, CA 94720
Maria Kaminska
Affiliation:
Department of Materials Science, University of California, Berkeley, CA 94720
Kin Man Yu
Affiliation:
Department of Materials Science, University of California, Berkeley, CA 94720 Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Eicke Weber
Affiliation:
Department of Materials Science, University of California, Berkeley, CA 94720
Get access

Abstract:

The electrical properties and preferred lattice sites of Cu in GaAs were studied combining electrical and optical measurements with Particle Induced X-ray Emission (PIXE) and Channeling. For electronic characterization, Deep Level Transient Spectroscopy (DLTS), Hall Effect measurements, and Photoluminescence (PL) were used. From this comprehensive study it was determined that Cu introduces two levels in the bandgap, that the concentration of electrically active copper is considerably smaller than the total copper concentration, and that most of the Cu in GaAs is not of purely substitutional character.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kullendorff, N., Jansson, L. and Ledebo, L. A., J. Appl. Phys. 54, 3203 (1983).Google Scholar
2. Bykovskii, V. Yu., Vovnenko, V. I., and Dmitruk, N. L., Soy. Phys. Semicond. 23, 459 (1989).Google Scholar
3. Blatte, M. and Willmann, F., Optics Commun., 4, 178 (1971).Google Scholar
4. Willmann, F., Blatte, M., Queisser, H. J., and Treusch, J., Solid State Commun., 9, 2281 (1971).CrossRefGoogle Scholar
5. Zakharova, G. A., Kriviv, M. A., Malisova, E. V., and Popova, E. A., Soy. Phys Semicond., 6, 171 (1972).Google Scholar
6. Blanc, J. and Weisberg, L. R., J. Phys. Chem. Solids, 25, 221 (1964).CrossRefGoogle Scholar
7. Reuter, W., Lurio, A., Cardone, F. and Ziegler, J. F., J. Appl. Phys., 46, 3194 (1975)Google Scholar
8. Hall, R. N. and Racette, J. H., J. Appl. Phys. 35, 379 (1961).Google Scholar
9. Janzen, E., Linnarsson, M., Monemar, B., and Kleverman, M., Mat. Res. Soc. Symp. Proc., 163, 1990.Google Scholar
10. Gislason, H. P., Wang, Z. G., Monemar, B., J. Appl. Phys., 58, 240 (1985).Google Scholar
11. Wang, Z. G., Gislason, H. P. and Monemar, B., J. Appl. Phys., 58, 230 (1985).CrossRefGoogle Scholar
12. Queisser, H. J. and Fuller, C. S., J. Appl. Phys., 37, 4895 (1966).Google Scholar
13. Willmann, F., Bimberg, D., and Blatte, M., Phys. Rev. B., 7, 2473 (1973).CrossRefGoogle Scholar
14. Sze, S. M., Physics of Semiconductor Devices 1st ed., p. 30, John Wiley and Sons (1969).Google Scholar
15. Miller, G. L., Lang, D. V., and Kimerling, L. C., Ann. Rev. Mater. Sci., 377 (1977)CrossRefGoogle Scholar
16. deWit, M. and Estle, T. L., Phys. Rev. 132, 195 (1963).Google Scholar
17. Weber, E. R., Appl. Phys. A, 30, 1 (1983).Google Scholar