Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T18:02:14.851Z Has data issue: false hasContentIssue false

Properties Variation with Composition of Single-Crystal Pb(ZrxTi1−x,)O3 Thin Films Prepared by MOCVD

Published online by Cambridge University Press:  15 February 2011

C. M. Foster
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
G.-R. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
Z. Li
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
R. Jammy
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
L. A. Wills
Affiliation:
Hewlett Packard Laboratories, Hewlett-Packard Company, 3500 Deer Creek Road, Palo Alto, CA 94304
R. Hiskes
Affiliation:
Hewlett Packard Laboratories, Hewlett-Packard Company, 3500 Deer Creek Road, Palo Alto, CA 94304
Get access

Abstract

Single-crystal thin films covering the full compositional range of Pb(ZrxTi1−x)O3(PZT) 0≤x≤1 have been deposited by metal-organic chemical vapor deposition (MOCVD). The films were grown on epitaxial, RF-sputter-deposited SrRuO3 thin film electrodes on (001) SrTiO3 substrates. X-ray diffraction (XRD), energy-dispersive electron spectroscopy (EDS) and optical waveguiding were used to characterize the crystalline structure, composition, refractive index, and film thickness of the deposited films. We found that the PZT films were single-crystalline for all compositions exhibiting cube-on-cube epitaxy with the substrate with very high degrees of crystallinity and orientation. We report the systematic variations in the optical, dielectric, polarization, and transport properties as a function of composition and the epitaxy-induced modifications in the solid-solution phase diagram of this system. These films exhibited electronic properties which showed clear systematic variations with composition. High values of remnant polarization (30–55 μC/cm2) were observed at all ferroelectric compositions. Unlike previous studies, the dielectric constant exhibited a clear dependence on composition with values ranging from 225–650. The coercive fields decreased with increasing Zr concentration to a minimum of 20 kV/cm at the (70/30) composition. In addition, these films exhibited both high resistivity and dielectric-breakdown strength (˜1013 Ω-cm at 100 kV/cm and >300 kV/cm, respectively) without any compensative doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example see, Ferroelectric Thin Films IH ed. Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K., (Mat. Res. Soc. Symp. Proc. Vol.310, San Francisco, CA 1993).Google Scholar
2. Brierley, C. J., Trundle, C., Considine, L., Whatmore, R. W., and Ainger, F. W., Ferroelectrics 90, 181 (1989); A. I. Kingon, K. Y. Hsieh, L. L. King, S. H. Rou, K. J. Backmann, and R. F. Davis, in Ferroelectric Thin Films ed. by E. R. Myers and A. I. Kingon, (Mat. Res. Soc. Symp. Proc. Vol.200, Pittsburg, PA 1990); T. Katayama, M. Fuzimoto, M. Shimizu, and T. Shiosaki, Jpn. J. Appl. Phys. 30, 2189 (1991).Google Scholar
3. Braun, W., Kwak, B. S., Erbil, A., Budai, J. D., and Wilkens, B. J., Appl. Phys. Lett. 63, 467, (1993).Google Scholar
4. Sakashita, Yukio, Ono, Toshiyuki, Segawa, Hideo, Tominaga, Kouji, and Okada, Masaru, J. Appl. Phys. 69, 835 (1991).Google Scholar
5. For a review, see Xu, Yuhuan, Ferroelectric Materials and Their Applications, North-Holland, New York, 1991, pp. 109113.Google Scholar
6. Bai, G. R., Chang, H. L. M., Kim, H. K., Foster, C. M., and Lam, D. J., Appl. Phys. Lett. 64, 408 (1992); Y. Gao, G. Bai, K. L. Merkle, Y. Shi, H. L. M. Chang, Z. Shen, and D. J. Lam, J. Mater. Res. 8, 145 (1993).Google Scholar
7. Bai, G. R., Chang, H. L. M., Foster, C. M., Shen, Z., and Lam, D. J., J. Mater. Res. 9, 156 (1994).Google Scholar
8. You, H., Chang, H. L. M., Chiarello, R. P., and Lam, D. J., in Heteroepitaxy of Dissimilar Materials, ed. by Ferrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mat. Res. Soc. Symp. Proc. Vol.221, Pittsburg, PA 1990) p. 181.Google Scholar
9. Foster, C. M., Li, Z., Bai, G. R., You, H., Guo, D., and Chang, H. L. M., in Epitaxial Oxide Thin Films and Heterostructures ed. Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M., (Mat. Res. Soc. Symp. Proc. Vol.341, San Francisco, CA 1994).Google Scholar
10. Foster, C. M., Li, Z., Buckett, M., Miller, D., Baldo, P. M., Rehn, L. E., Bai, G. R., Guo, D., You, H. and Merkle, K. L., J. Appl. Phys. 78, 2607 (1995).Google Scholar
11. Foster, C. M., Csencsits, R., Baldo, P. M., Bai, G. R., Li, Z., Rehn, L. E., Wills, L. A. and Hiskes, R. in Smart Structures and Materials 1995 (Proc. of the SPIE Vol.2441. San Diego, CA 1995). C. M. Foster, R. Csencsits, P. M. Baldo, G. R. Bai, Z. Li, L. E. Rehn, L. A. Wills, R. Hiskes, D. Dimos and M. B. Sinclair,, in Ferroelectric Thin Films IV, ed. by R. Ramesh and B. Tuttle, (Mat. Res. Soc. Symp. Proc. Vol.361, Boston, MA 1994) pp. 307.Google Scholar
12. Wills, L. A. and Amano, J., in Ferroelectric Thin Films IV, ed. by Ramesh, R. and Tuttle, B., (Mat. Res. Soc. Symp. Proc. Vol.361, Boston, MA 1994).Google Scholar
13. Foster, C. M., Chan, S.-K., Chang, H. L. M., Chiarello, R. P., Zhang, T. J., Guo, J., and Lam, D. J., J. Appl. Phys. 73, 7823 (1993).Google Scholar
14. Shirane, G. and Suzuke, K., J. Phys. Soc. Jpn. 3. 333 (1952).Google Scholar
15. Hase, T. and Shiosaki, T., Jpn. J. Appl. Phys. 30, 2159 (1991), T. Okamura, M. Adachi, T. Shiosaki and A. Kawabata, Jpn. J. Appl. Phys. 30, 1034 (1991).Google Scholar
16. Horwitz, J. S., Grabowski, K. S., Chrisey, D. B., and Leuchtner, R. E., Appl. Phys. Lett 59, 1565 (1991). R. Ramesh, B. Dutta, T. S. Ravi, J. Lee, T. Sands, and V. G. Keramidas, Appl. Phys. Lett. 64, 1588 (1994).Google Scholar