Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T09:09:30.436Z Has data issue: false hasContentIssue false

Quantitative Calculation of Dislocation Mobility

Published online by Cambridge University Press:  10 February 2011

S. Swaminarayan
Affiliation:
Los Alamos National Laboratory, MS G-755, Los Alamos, NM 87545
D. L. Preston
Affiliation:
Los Alamos National Laboratory, MS G-755, Los Alamos, NM 87545
Get access

Abstract

We present a new method to calculate the response of dislocations to applied stress. This new method, called the dislocation treadmill, can be used to study the effect of vacancies, interstitials, stresses, strain rate, temperature etc., on the steady state velocity of the dislocation. We demonstrate the use of the method by calculating the response of a dislocation to a constant applied shear stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, H.Y. and LeSar, R., Phil. Mag. A, 71 (1995).Google Scholar
2. Barts, D.B. and Carlsson, A.E., Phys. Rev. E, 52 (1995).Google Scholar
3. Zacharopoulos, N., Srolovitz, D.J. and LeSar, R., Acta Mater., 45, #9, (1997).Google Scholar
4. Zbib, Hussein M., Rhee, M. R., and, Hirth, John P., Int. J. Mech. Sci., 40, #2-3, (1998).Google Scholar
5. Serra, A., a. , D. J. B. Acta Metall. et Mat., 43, (1995).Google Scholar
6. Clapp, P.C., Glazov, M.V., and Rifkin, J.A., J. de Phys. IV, 3, (1993).Google Scholar
7. Baskes, M.I., and Daw, M.S., Sandia National Laboratories Report SAND89-8460, (1990).Google Scholar
8. Eshelby, J.D., Proc. Phys. Soc., 62A, 307 (1949).Google Scholar
9. Hirth, J.P., and Lothe, J., in “Theory of Dislocations,” John Wiley & Sons, New York, 1984.Google Scholar
10. Foiles, S.M., Baskes, M.I. and Daw, M.S., Phys. Rev. B 33.2 (1986).Google Scholar
11. Voter, A.F., J. Chem. Phys., 82, (1985).Google Scholar
12. Allen, M.P., and Tildesley, D.J., in “Computer Simulation of Liquids,” Oxford Science Publications, Oxford, (1996).Google Scholar
13. Hänggi, P., Talkner, Peter, and Bokovek, Michal, Rev. Mod. Phys., 62 #2, (1990).Google Scholar
14. Kumar, A., Hauser, F.E., and Dorn, J.E., Acta. Met., 16, (1968).Google Scholar