Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T22:12:22.821Z Has data issue: false hasContentIssue false

Radiolytic Corrosion of 238Pu-doped UO2 Pellets in 5 M NaCl Solution

Published online by Cambridge University Press:  17 March 2011

M. Kelm
Affiliation:
Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, Germany e-mail:, kelm@ine.fzk.de
E. Bohnert
Affiliation:
Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, Germany
Get access

Abstract

Deaerated 5 M NaCl solution is alpha-irradiated up to 700 days in the presence of UO2 pellets. Experiments are conducted with 238Pu-doped pellets in pure brine and with undoped UO2 pellets in a 238Pu containing brine. The long-lived radiolysis products H2, O2 and ClO3- are formed in all cases proportional to the dose applied on the solution and with yields corresponding to 200, 80 and 7 nMol/(L*Gy).

The U concentrations increase with time but do not exceed about 10−4 Mol/L thus indicating Uranium to be solubility limited. Moreover, the rinse solutions of the vessels at the end of the experiments contain up to one order of magnitude more U than found in the solutions. The total amounts of mobilized U deviate by less than a factor 10 from each other regardless of the large ratio of surface dose rates (ratio up to 2300) or mean dose rates (ratio up to 100), applied while the reference experiment (UO2 pellet in pure brine) yields only some 10−7 Mol/L U which is over 3 orders of magnitude lower than observed in experiments with radiation present.

The simulation of the radiation chemical processes using a kinetic reaction model can reasonably reproduce the findings of the experiments with respect to the formation of H2 and O2 and give the order of magnitude for the concentrations of chlorine species and of oxidized UO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shoesmith, D.W.,J. Nucl. Mater. 282, 1 (2000)Google Scholar
2. Christensen, H., Sunder, S., Nucl. Technol. 131, 102 (2000)Google Scholar
3. Bruno, J., Cera, E., Eklund, U.B., Eriksen, T., Grive, M., Spahiu, K., Radiochim. Acta 88, 513 (2000)Google Scholar
4. Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J.F., Barthe, M.F., Garrido, F., Gosset, D., J. Nucl. Mater. 288, 11 (2001)Google Scholar
5. Röllin, S., Spahiu, K., Eklund, U.B., J. Nucl. Mater. 297, 231 (2001)Google Scholar
6. Cachoir, C., Lemmens, K., Berghe, S. van den, Iseghem, P. van, J. Nucl. Mater. 321, 49 (2003)Google Scholar
7. Ekeroth, E., Jonsson, M., J. Nucl. Mater. 322, 242 (2003)Google Scholar
8. Kelm, M., Bohnert, E., Nucl. Technol. 129, 119 (1999)Google Scholar
9. Kelm, M., Bohnert, E., Nucl. Technol. 129, 123 (1999)Google Scholar
10. Kelm, M., Bohnert, E., Pashalidis, I., Res. Chem. Intermed. 27, 503 (2001)Google Scholar
11. Kelm, M., Bohnert, E., Proc. Indian Acad. Sci. (Chem. Sci.) 114, 697 (2002)Google Scholar
12. Kelm, M., Bohnert, E., Radiochim. Acta 74, 155 (1996)Google Scholar
13. Garisto, F., Ann. Nucl. Energy 16, 33 (1989)Google Scholar
14. Kelm, M., Bohnert, E., Wissenschaftliche Berichte, Forschungszentrum Karlsruhe, FZKA 6977 (2004)Google Scholar
15. Rondinella, V.V., Matzke, Hj., Cobos, J., Wiss, T., Radiochim. Acta 88, 527 (2000)Google Scholar
16. Cobos, J., Havela, L., Rondinella, V.V., Pablo, J. de, Gouder, T., Glatz, J.P., Carbol, P., Hj. Matzke, Radiochim. Acta 90, 597 (2002)Google Scholar