Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:08:57.071Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Ion Implanted GaAs and InP

Published online by Cambridge University Press:  22 February 2011

K.V. Vaidyanathan
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road Malibu, California 90265
H.L. Dunlap
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road Malibu, California 90265
Get access

Abstract

This paper discusses the properties of high intensity lamp-annealed silicon or beryllium-implanted GaAs and InP samples. We find this annealing process can result in efficient activation of dopants. Conventional furnace annealing at the same temperature does not result in increased electrical activation of the dopants. High fluence silicon implants can be activated in anneal times as short as 2 seconds, while low fluence silicon implants require more extended annealing. Activation of low fluence implants in GaAs depends strongly on the properties of the bulk semiinsulating material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Donnelly, J.P., in “Gallium Arsenide and Related Compounds,” Conference Series 33b, Institute of Physics, Bristol, London (1976) and references therein.Google Scholar
2.Anderson, C.L., Vaidyanathan, K.V., Dunlap, H.L., and Kamath, G.S., J. Electrochem. Soc., 127, 925 (1980).Google Scholar
3.Immorlica, A.A. and Eisen, F.H., Appl. Phys. Lett. 29, 94 (1976).Google Scholar
4.Eu, V., Feng, M., Henderson, W.B., Kim, H.B., and Whelan, J.M., Appl. Phys. Lett., 37, 473 (1980).Google Scholar
5.Vaidyanathan, K.V., Helix, M.J., Wolford, D.J., Streetman, B.G., Blattner, R.J., and Evans, C.A. Jr., J. Electrochem. Soc., 124, 1781 (1975).Google Scholar
6.Donnelly, J.P., Lindley, W.T., and Hurwitz, C.E., Appl. Phys. Lett., 27, 42 (1975).Google Scholar
7.Anderson, C.L. and Dunlap, H.L., Appl. Phys. Lett., 35, 178 (1979).Google Scholar
8.Vaidyanathan, K.V., Dunlap, H.L., and Anderson, C.L., Inst. Phys. Conf. Ser. No. 63. Presented at Int. Symp. GaAs and Related CompoundsJapan1981.Google Scholar
9.Kwun, S-I., Spitzer, W.G., Anderson, C.L., Dunlap, H.L., and Vaidyanathan, K.V., J. Appl. Phys., 50, 6873 (1979).Google Scholar
10.Fan, J.C.C., Donnelly, J.P., Bozier, C.O., and Chapman, R.L., in “Gallium Arsenide and Related Compounds,” Conf. Ser. No. 45, Institute of Physics, Bristol, London (1979), and references therein.Google Scholar
11.Anderson, C.L., Mat. Res. Soc. Proc. 4, 653664 (1982).Google Scholar
12.Williams, J.S., Harrison, H.B., Mat. Res. Soc. Proc. 1, 209222 (1981).Google Scholar
13.Kuzuhara, M., Kohzu, H., and Takayama, Y., Appl. Phys. Lett., 41, 755 (1982).Google Scholar
14.Kuzuhara, M., Kohzu, H., and Takayama, Y., J. Appl. Phys., 54, 3121 (1983).Google Scholar