Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T00:27:04.371Z Has data issue: false hasContentIssue false

Rational Designs on TiO2-based Nanocomposites for Solar Photocatalytic Purification

Published online by Cambridge University Press:  22 June 2011

Shanmin Gao
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, U.S.A. School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong, PR China
Tao Xu*
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, U.S.A.
*
*Email: txu@niu.edu
Get access

Abstract

We report an template-free process to fabricate S-C-codoped and (I2)n-C-codoped meso/nanoporous TiO2 nanocrystallites. Methylene blue solutions are used as a model pollute to evaluate the sorption and photocatalytic activity of the samples under visible light radiation. The high photocatalytic activity in visible light region of our samples is attributed to numerous oxygen vacancies, large specific surface area and the continuous states in the band gap of TiO2 introduced by I2 or S doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujihira, M., Satoh, Y., and Osa, T., Nature 293, 206(1981).Google Scholar
2. Linsebigler, A. L., Lu, G. Q., and Yates, J. T., Chem. Rev. 95, 735(1995).Google Scholar
3. Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W., Chem. Rev. 95, 69(1995).Google Scholar
4. Finazzi, E., Di Valentin, C., and Pacchioni, G., J. Phys. Chem. C 113, 220(2009).Google Scholar
5. Gopal, N. O., Lo, H. H., and Ke, S. C., J. Am. Chem. Soc. 130, 2760(2008).Google Scholar
6. Tachikawa, T., Fujitsuka, M., and Majima, T., J. Phys. Chem. C 111, 5259(2007).Google Scholar
7. Serpone, N., J. Phys. Chem. C 110, 24287(2006).Google Scholar
8. Yang, Z., Xu, T., Ito, Y. S., Welp, U., and Kwoko, W. K., J. Phys. Chem. C 113, 20521(2009).Google Scholar
9. Yang, Z., Xu, T., Gao, S., Welp, U., and Kwok, W. K., J. Phys. Chem. C 114, 19151(2010).Google Scholar
10. Papageorgiou, N., Barbé, C., and Grätzel, M., J. Phys. Chem. B 102, 4156(1998).Google Scholar
11. Xu, P., Xu, T., Lu, J., Gao, S. M., Hosmane, N. S., Huang, B. B., Dai, Y., and Wang, Y. B., Energ. Environ. Sci. 3, 1128(2010).Google Scholar
12. Xu, P., Lu, J., Xu, T., Gao, S., Huang, B., and Dai, Y., J. Phys. Chem. C 114, 9510(2010).Google Scholar
13. Janus, M., Inagaki, M., Tryba, B., Toyoda, M., and Morawski, A. W., Appl. Catal. B: Environ. 63, 272(2006).Google Scholar
14. Ren, T. Z., Yuan, Z. Y., and Su, B. L., Chem. Phys. Lett. 374, 170(2003).Google Scholar
15. Yu, J. G., Zhou, M. H., Cheng, B., Yu, H. G., and Zhao, X. J., J. Mol. Catal. A: Chem. 227, 75(2005).Google Scholar
16. Tojo, S., Tachikawa, T., Fujitsuka, M., and Majima, T., J. Phys. Chem. C 112, 14948(2008).Google Scholar
17. Sibu, C. P., Kumar, S. R., Mukundan, P., and Warrier, K. G. K., Chem. Mater. 14, 2876(2002).Google Scholar
18. Subramanian, V., Wolf, E. E., and Kamat, P. V., J. Am. Chem. Soc. 126, 4943(2004).Google Scholar