Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:42:53.944Z Has data issue: false hasContentIssue false

Reaction Control in Amorphous Silicon Film Deposition by Hydrogen Chloride

Published online by Cambridge University Press:  01 February 2011

Akihiro Takano
Affiliation:
Fuji Electric Corporate Research and Development, Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa 240-0194Japan
Takehito Wada
Affiliation:
Fuji Electric Corporate Research and Development, Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa 240-0194Japan
Shinji Fujikake
Affiliation:
Fuji Electric Corporate Research and Development, Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa 240-0194Japan
Takashi Yoshida
Affiliation:
Fuji Electric Corporate Research and Development, Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa 240-0194Japan
Tokio Ohto
Affiliation:
Fuji Electric Corporate Research and Development, Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa 240-0194Japan
Eray S. Aydil
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

HCl was added to SiH4 containing plasmas to grow a-Si:H(Cl) films with dangling bonds terminated with Cl instead of H. Bulk and surface infrared spectra, film thickness and optical band gap were examined by in situ multiple total internal reflection Fourier transform infrared spectroscopy and in situ spectroscopic ellipsometry. SiH2Cl2 was also used as a conventional Cl source for reference a-Si:H(Cl) film deposition experiments. The introduction of HCl does not affect the deposition rate significantly, and the deposited a-Si:H(Cl) films contain over 1021cm-3 Cl atoms. HCl addition to the gas phase changes the surface compositions of the growing films drastically from higher silicon hydride to chlorinated lower hydride. The surface reaction control eliminates unfavorable hydride bonding structures such as SiH2 and/or SiH in voids in the deposited films. The a-Si:H(Cl) films deposited from mixtures of SiH4 and HCl do not show significant optical band gap widening in spite of containing over 1021cm-3 Cl atoms, a concentration that is comparable to that of hydrogen. In contrast, a conventional chlorine source of SiH2Cl2 increases the deposition rate significantly compared to HCl. The increase in the deposition rate results in monotonic decrease of the refractive index and the optical band gap widening.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Nakata, M. and Wagner, S., Appl. Phys. Lett. 65, 1940 (1994).Google Scholar
3. Osborne, I. S., Hata, N., and Matsuda, A., Mater. Res. Soc. Symp. Proc. 377, 113 (1995).Google Scholar
4. Dairiki, K., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 38, 4007 (1999).Google Scholar
5. Azuma, M., Yokoi, T., Shiiya, I., and Shimizu, I., J. Non-Cryst. Solids 164-166, 47 (1993).Google Scholar
6. Nevin, W. A., Yamagishi, H., Asaoka, K., Nishio, H., and Tawada, Y., Appl. Phys. Lett. 59, 3294 (1991).Google Scholar
7. Nishimoto, T., Takagi, T., Kondo, M., and Matsuda, A., Sol. Energy Mater. & Sol. Cells 66, 179 (2001).Google Scholar
8. Lee, K. H., Kim, S. K., Lee, K. S., Choi, J. H., Kim, C. S., Jang, J., Pietruszko, S. M. and Kostana, M., Sol. Energy Mater. & Sol. Cells 49, 61 (1997).Google Scholar
9. Hata, N., Osborne, I. S., Ikeda, T., Durny, R., and Matsuda, A., J. Non-Cryst. Solids 198-200, 415 (1996).Google Scholar
10. Oshima, T., Yamaguchi, K., Yamada, A., Konagai, M., and Takahashi, K., Mater. Res. Soc. Symp. Proc. 336, 91 (1994).Google Scholar
11. Takano, A. and Aydil, E. S., Jpn. J. Appl. Phys. 41, L1357 (2002).Google Scholar
12. Aydil, E. S., Maroudas, D., Marra, D. C., Kessels, W. M. M., Agarwal, S., Ramalingam, S., Sriraman, S., Sanden, M. C. M. Van de and Takano, A., Res. Soc. Symp. Proc. 664, A1.1.1 (2001).Google Scholar
13. Jellison, G. E. Jr and Mondine, F. A., Appl. Phys. Lett. 69, 371 (1996).Google Scholar
14. Fujiwara, H., Koh, J., and Collins, R. W., Thin Solid Films 313-314, 474 (1998).Google Scholar
15. Kessels, W. M. M., Marra, D. C., Sanden, M. C. M. van de and Aydil, E. S., J. Vac. Sci. Technol. A20, 781 (2002).Google Scholar
16. Shirai, H., Fukai, C., Sakuma, Y., and Moriya, Y., J. Non-Cryst. Solids 266-269, 131 (2000).Google Scholar
17. Al-Dallal, S.: J. Non-Cryst. Solids 59&60, 361 (1983).Google Scholar
18. Adler, D.: Semiconductors and Semimetals, ed. Pankove, J. I. (Academic Press, Inc., Orlando, 1984) Chap. 14, p.295.Google Scholar
19. Feil, H., Dieleman, J., and Garrison, B. J.: J. Appl. Phys. 74, 1303 (1993).Google Scholar
20. Allan, D. C. and Joannopoulos, J. D., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, 1984), p.560.Google Scholar