No CrossRef data available.
Published online by Cambridge University Press: 01 January 1992
Synthesis of the Ni-25% at. Al intermetallic compound by the thermal explosion mode subject to the application of compressive stress was systematically investigated. The stress was applied prior to the reaction. It was proved that the compressive stress had a profound effect on the reaction, as well as the densification. At a relative low stress, a full reaction could be completed and the major phase of the final product is Ni3Al. At higher stresses, a partial reaction was resulted and the final product was primary the intermediate phases, e.g. Ni and NiAl, etc. Three distinct reaction products were obtained in this study. When the stress was below approximately 5 MPa, a fully reacted product was obtained. Between 5 and 15 MPa, a fully and partially reacted zone coexisted. Above 15 MPa, only a partial reaction prevailed. In this experiment, a final product of 99.9% relative density was obtained at the high stress level.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.